63. ИСТОЧНИКИ СВЕТА. РАСПРОСТРАНЕНИЕ СВЕТА
Ещё в глубокой древности учёные интересовались природой света. Что такое свет? Почему одни предметы цветные, а другие белые или чёрные?
Опытным путём было установлено, что свет нагревает тела, на которые он падает. Следовательно, он
передаёт этим телам энергию. Вам уже известно, что одним из видов теплопередачи является излучение.
Свет — это излучение, воспринимаемое глазом.
Свет это видимое излучение.
Поскольку свет — это излучение, то ему присущи все особенности этого вида теплопередачи. Это значит, что перенос энергии может осуществляться в вакууме, а энергия излучения частично поглощается телами, на которые оно падает. Вследствие этого тела нагреваются.
Тела, от которых исходит свет, являются источниками света.
Источники света подразделяются на:
- Естественные источники света — это Солнце, звёзды, атмосферные разряды, а также светящиеся объекты животного и растительного мира. Это могут быть светлячки, гнилушки и пр.
Естественные источники света: а — светлячок; б — медуза
- Искусственные источники света, (в зависимости от процесса лежащего в основе получения излучения)
- - тепловые (электрические лампочки, пламя газовой горелки, свечи и др.)
- - люминесцирующие (люминесцентные и газосветовые лампы).
Искусственные источники света: а — свеча; б — люминесцентная лампа
Мы видим не только источники света, но и тела, которые не являются источниками света, — книгу, ручку, дома, деревья и др. Эти предметы мы видим только тогда, когда они освещены. Излучение, идущее от источника света, попав на предмет, меняет своё направление и попадает в глаз.На практике все источники света имеют размеры.
При изучении световых явлений мы будем пользоваться понятием точечный источник света.
Если размеры светящегося тела намного меньше расстояния, на котором мы оцениваем его действие, то светящееся тело можно считать точечным источником.
Громадные звёзды, во много раз превосходящие Солнце, воспринимаются нами как точечные источники света, так как находятся на колоссальном расстоянии от Земли.
Световой луч — это линия, вдоль которой распространяется энергия от источника света.
В однородной среде свет распространяется прямолинейно (Опыт: Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим).
Прямолинейное распространение света — факт, установленный в глубокой древности. Об этом писал ещё основатель геометрии Евклид (300 лет до нашей эры). Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные (рис. 122).
Рис. 122. Применение закона прямолинейного распространения света
Прямолинейностью распространения света в однородной среде объясняется образование тени и полутени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.
На рисунке 123 показана тень, полученная на экране при освещении точечным источником света S непрозрачного шара А. Поскольку шар непрозрачен, то он не пропускает свет, падающий на него. В результате на экране образуется тень.
Рис. 123. Получение тени. Рис. 124. Получение полутени
Тень — это та область пространства, в которую не попадает свет от источника.
Такую тень можно получить в тёмной комнате, освещая шар карманным фонарём. Если провести прямую через точки S и А (см. рис. 123), то на ней будет лежать и точка В. Прямая SB является лучом света, который касается шара в точке А. Если бы свет распространялся не прямолинейно, то тень могла бы не образоваться. Такую чёткую тень мы получили потому, что расстояние между источником света и экраном намного больше, чем размеры лампочки.
Теперь возьмём большую лампу, размеры которой будут сравнимы с расстоянием до экрана (рис. 124). Вокруг тени на экране образуется частично освещённое пространство — полутень.
Полутень — это та область, в которую попадает свет от части источника света.Описанный выше опыт также подтверждает прямолинейное распространение света. Поскольку в данном случае источник света состоит из множества точек и каждая из них испускает лучи, то на экране имеются области, в которые свет от одних точек попадает, а от других нет. Там и образуется полутень. Это области А и В.
Часть поверхности экрана окажется совершенно неосвещённой. Это центральная область экрана. Здесь наблюдается полная тень.
Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как затмения Солнца и Луны.
При движении вокруг Земли Луна может оказаться между Землёй и Солнцем или Земля — между Луной и Солнцем. В этих случаях наблюдаются солнечные или лунные затмения.
Во время лунного затмения Луна попадает в тень, отбрасываемую Землёй (рис. 125).
Во время солнечного затмения (рис. 126) тень от Луны падает на Землю.
Рис. 125. Лунное затмение Рис. 126. Солнечное затмение
Рис. 127. Солнечная корона
В тех местах Земли, куда упала тень, будет наблюдаться полное затмение Солнца. В местах полутени только часть Солнца будет закрыта Луной, т. е. произойдёт частное затмение Солнца. В остальных местах на Земле затмение наблюдаться не будет.
Поскольку движения Земли и Луны хорошо изучены, то затмения предсказываются на много лет вперёд. Учёные пользуются каждым затмением для разнообразных научных наблюдений и измерений. Полное солнечное затмение даёт возможность наблюдать внешнюю часть атмосферы Солнца (солнечную корону, рис. 127). В обычных условиях солнечная корона не видна из-за ослепительного блеска поверхности Солнца.
Вопросы
1. Что такое луч света?
2. В чём состоит закон прямолинейного распространения света?
3. Какое явление служит доказательством прямолинейного распространения света?
4. Пользуясь рисунком 123, объясните, как образуется тень. При каких условиях наблюдается не только тень, но и полутень?
5. Пользуясь рисунком 124, объясните, почему в некоторых областях экрана получается полутень.
1. Какие источники света изображены на рисунке 128?
Рис. 128
2. На рисунке 129 изображена схема опыта по получению тени от двух источников света S1 и S2. Источник S1 — маленькая лампочка красного цвета, источник S2 — синего. Перечертите схему в тетрадь и раскрасьте рисунок. Объясните, почему опыт доказывает прямолинейность распространения света.
Рис. 129
1. В куске плотного картона сделайте отверстие диаметром 3-5 мм. Расположите этот кусок картона на расстоянии примерно 10—15 см от стены, находящейся против окна. На стене вы увидите уменьшенное, перевёрнутое, слабо освещённое изображение окна. Получение такого изображения предмета через малое отверстие служит ещё одним доказательством прямолинейного распространения света. Объясните наблюдаемое явление.
2. Чтобы получить изображение предмета при помощи малого отверстия, изготовьте прибор, называемый «камера-обскура» (тёмная комната). Для этого картонную или деревянную коробку обклейте чёрной бумагой, в середине одной из стенок проделайте маленькое отверстие (примерно 3—5 мм в диаметре), а противоположную стенку замените матовым стеклом или плотной бумагой. Получите при помощи изготовленной камеры-обскуры изображение хорошо освещённого предмета. Такие камеры раньше использовали для фотографирования, но только неподвижных объектов, так как выдержка должна была составлять несколько часов.
3. Подготовьте презентацию по теме «Солнечные и лунные затмения».
64. ВИДИМОЕ ДВИЖЕНИЕ СВЕТИЛ
Солнце и движущиеся вокруг него небесные тела составляют Солнечную систему. Звёзды, которые мы видим невооружённым глазом, — это ничтожная доля звёзд, входящих в нашу Галактику. Вид звёздного неба меняется в зависимости от местонахождения наблюдателя на Земле. Так, суточное движение Солнца для
жителей Северного полушария — это движение слева направо, для жителей Южного полушария — справа налево.
Путь, который проходит Солнце за год на фоне звёзд, называют эклиптикой (рис. 130),
Период одного оборота по эклиптике называют звёздным годом.
Он равен 365,2564 средних солнечных суток.
Созвездия, через которые проходит эклиптика, называют зодиакальными. Их число соответствует
количеству месяцев в году.
Солнце перемещается по небу, переходя из одного созвездия в другое, и завершает
полный оборот в течение года.
Видимое движение Солнца по эклиптике подтверждает, что Земля движется вокруг Солнца (рис. 131). Солнце движется по эклиптике неравномерно. Дневная и ночная части его пути неодинаковы. Они равны только в дни равноденствия, когда Солнце находится на небесном экваторе.
Земля является одной из планет Солнечной системы.
Земля обращается вокруг Солнца по эллиптической орбите и вращается вокруг собственной оси.
Движение Земли вокруг Солнца и некоторый наклон земной оси приводят к смене времён года.
При движении Земли вокруг Солнца ось Земли остаётся параллельной самой себе.
Рис. 130. Движение Солнца по эклиптике
Рис. 131. Движение Земли вокруг Солнца и кажущееся годичное движение Солнца
Рис. 132. Фазы Луны
Луна — спутник Земли, ближайшее к Земле небесное тело.
Она вращается вокруг Земли в том же направлении, что и Земля вокруг своей оси, а вместе с Землёй обращается вокруг Солнца.
Смена лунных фаз
Луна движется довольно быстро, так что её движение можно заметить в течение одной ночи.
Луна не излучает света, поэтому на небе видна только освещённая Солнцем её поверхность — дневная сторона. Перемещаясь по небу с запада на восток, Луна за месяц догоняет и перегоняет Солнце.
При этом происходит смена лунных фаз: новолуние, первая четверть, полнолуние, последняя четверть (рис. 132).
В новолуние Луну не разглядеть даже в телескоп, так как она располагается в том же направлении, что и Солнце, и повёрнута к Земле неосвещённым полушарием.
Когда Луна оказывается в стороне, противоположной Солнцу, наступает полнолуние. Полная Луна светит всю ночь. Путь Луны по небу проходит недалеко от эклиптики, поэтому полная Луна поднимается из-за горизонта при заходе Солнца.
Движение планет среди звёзд более сложное, чем движение Солнца и Луны.
Все планеты обращаются вокруг Солнца в одном направлении.
Планета, двигаясь в том же направлении, что и Солнце и Луна, через некоторое время замедляет свой ход, затем
"останавливается", смещается в обратном направлении и после очередной остановки снова меняет направление движения на первоначальное. Если нанести на карту этот путь, то получается
петля (рис. 133).
Рис. 133. Петлеобразное движение планет
Невооружённым взглядом на небе можно увидеть пять планет: Меркурий, Венеру, Марс, Юпитер и Сатурн.
1. Как движется Солнце в течение года?
2. Какие фазы Луны вам известны?
3. Как движутся планеты?
1. С помощью «Школьного астрономического календаря» изучите вид звёздного неба в мае. Сначала на карте определите Большую Медведицу, а затем найдите её на вечернем небе.
2. Используя астрономический календарь, определите на ночном небе Сатурн.
3. По рисунку 130 определите, когда наступают дни осеннего и весеннего равноденствия.
4, С помощью рис. 130 определите, когда отмечают дни летнего и зимнего солнцестояния. Почему их ещё называют днями солнцеворота?
65. ОТРАЖЕНИЕ СВЕТА. ЗАКОН ОТРАЖЕНИЯ СВЕТА
Вам уже известно, что свет от источника или от освещённого тела воспринимается человеком, если лучи света попадают в глаза. Как будет вести себя свет, если на его пути имеется преграда? Чтобы узнать это, проделаем следующий опыт.
а)
б)
Рис. 134. Падение лучей света на экран
От источника S направим через щель пучок света на экран. Экран будет освещён, но между источником и экраном мы ничего не увидим (рис. 134, а). Теперь между источником и экраном разместим какой-либо предмет: руку, листок бумаги. В этом случае излучение, достигнув поверхности предмета, отражается, изменяет своё направление и попадает в наши глаза, т. е. он становится виден.
Если запылить воздух между экраном и источником света, то становится видимым весь пучок света (рис. 134, б). Пылинки отражают свет и направляют его в глаза наблюдателя.
Это явление часто наблюдается, когда лучи солнца проникают в запылённый воздух комнаты.
Известно, что в солнечный день при помощи зеркала можно получить световой «зайчик» на стене, полу, потолке. Объясняется это тем, что пучок света, падая на зеркало, отражается от него, т. е. изменяет своё направление.
Световой «зайчик» — это след отражённого пучка света на каком-либо экране.
На рисунке 135 показано отражение света от зеркальной поверхности.
Рис. 135. Отражение света от зеркальной поверхности
Линия MN — поверхность раздела двух сред (воздух, зеркало). На эту поверхность из точки S падает пучок света. Его направление задано лучом SO. Направление отражённого пучка показано лучом ОБ. Луч SO — падающий луч, луч ОБ — отражённый луч. Из точки падения луча О проведён перпендикуляр ОС к поверхности MN.
Угол SOC, образованный падающим лучом SO и перпендикуляром, называется углом падения (а).
Угол СОВ, образованный тем же перпендикуляром ОС и отражённым лучом, называется углом отражения (Р).
Рис. 136. Прибор для наблюдения изменения угла падения света
При изменении угла падения луча будет меняться и угол отражения. Это явление удобно наблюдать на специальном приборе (рис. 136). Прибор представляет собой диск на подставке. На диск нанесена круговая шкала с ценой деления 10°. По краю диска можно передвигать осветитель, дающий узкий пучок света. Закрепим в центре диска зеркальную пластинку и направим на неё пучок света (см. рис. 136). Если пучок света падает под углом 45°, то под таким же углом он и отражается от зеркала. Передвигая осветитель по краю диска, будем менять угол падения луча и каждый раз отмечать соответствующий ему угол отражения. Во всех случаях угол отражения равен углу падения луча. При этом лучи отражённый и падающий лежат в одной плоскости с перпендикуляром, проведённым к зеркалу в точке падения луча. Таким образом, отражение света происходит по следующему закону: лучи падающий и отражённый лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча.
Угол падения a равен углу отражения b: Ð a = Ðb
Если луч падает на зеркало в направлении ВО (см. рис. 135), то отражённый луч пойдёт в направлении OS. Следовательно, падающий и отражённый лучи могут меняться местами.
Обратимость световых лучей - это свойство лучей (падающего и отражённого) меняться местами.
Всякая незеркальная, т. е. шероховатая, негладкая, поверхность рассеивает свет, так как на ней имеются небольшие выступы и углубления.
Такую поверхность можно представить в виде целого ряда малых плоских поверхностей, расположенных под разными углами друг к другу. Поэтому падающий на такую поверхность свет отражается по разным направлениям.
Вопросы
1. Пользуясь рисунком 135, расскажите содержание опытов, на основании которых были установлены законы отражения света.
2. Какой угол называют углом падения; углом отражения?
3. Сформулируйте законы отражения света.
4. Какое свойство лучей называется обратимостью?
Упражнение 45
1. Угол падения луча на зеркало равен 45°. Начертите отражённый луч. На этом же чертеже покажите расположение лучей для случая, когда угол падения равен 60°.
2. Угол падения луча на зеркало равен 0°. Чему равен угол отражения?
3. Перечертите в тетрадь рисунок 137. Постройте для каждого случая положение отражённого или падающего луча.
Рис. 137
4. Высота солнца такова, что его лучи составляют с горизонтом угол 40°. Сделайте чертёж (рис. 138) и покажите на нём, как нужно расположить зеркало АВ, чтобы «зайчик» попал на дно колодца.
Рис. 138
66. ПЛОСКОЕ ЗЕРКАЛО
Рис. 139. Изображение предмета в плоском зеркале
Рассмотрим изображение предмета в плоском зеркале. Плоским зеркалом называют плоскую поверхность, зеркально отражающую свет. Изображение предмета в плоском зеркале образуется за зеркалом, т. е. там, где предмета нет на самом деле. Как это получается?
Пусть из точечного источника света S падают на зеркало MN расходящиеся лучи SO, SOl, S02 (рис. 139). По закону отражения луч SO отражается от зеркала под углом 0°; луч SOx — под углом (Зх = аг; луч S02 отражается под углом (32 = а2. В глаз попадает расходящий
ся пучок света. Если продолжить отражённые лучи за зеркало, то они сойдутся в точке Sv В глаз попадает расходящийся пучок света, исходящий как будто бы из точки Sx. Эта точка называется мнимым изображением точки S.
Рассмотрим, как располагался источник света и его мнимое изображение относительно зеркала. По рисунку 139 можно доказать, пользуясь признаками равенства треугольников, что StO = OS. Это значит, что изображение предмета находится на таком же расстоянии за зеркалом, на каком предмет расположен перед зеркалом.
Сделанный вывод подтверждает и другой опыт. Укрепим на подставке кусок плоского стекла в вертикальном положении. Поставив перед стеклом зажжённую свечу (рис. 140), мы увидим в стекле, как в зеркале, изображение свечи. Возьмём теперь вторую такую же, но незажжённую свечу и расположим её по другую сторону стекла. Передвигая вторую свечу, найдём такое положение, при котором вторая свеча будет казаться тоже зажжённой. Это значит, что незажжённая свеча находится на том же месте, где наблюдается изображение зажжённой свечи. Измерив расстояние от свечи до стекла и от её изображения до стекла, убедимся, что эти расстояния одинаковы.
Таким образом, мнимое изображение предмета в плоском зеркале находится на таком же расстоянии от зеркала, на каком находится сам предмет.
Опыт также показывает, что высота изображения свечи равна высоте самой свечи. Это значит, что размеры изображения предмета в плоском зеркале равны размерам предмета.
Предмет и его изображение в плоском зеркале представляют собой не тождественные, а симметричные фигуры.
Рис. 141. Зеркальное изображение руки
Например, зеркальное изображение правой руки представляет собой как будто бы левую руку (рис. 141).
Плоским зеркалом широко пользуются и в быту, и в технике при создании различных устройств и приборов.
1. Пользуясь рисунком 139, объясните, как строится изображение точки в зеркале. Почему изображение точки в плоском зеркале называется мнимым? 3. Пользуясь рисунком 140, расскажите содержание опыта, поясняющего особенности изображения предмета в плоском зеркале. Какие особенности имеет изображение предмета в плоском зеркале?
Рис. 142
Используя рисунок 139, докажите, что изображение точки расположено за зеркалом на таком же расстоянии, на каком точка находится перед зеркалом.
Для наблюдения за поверхностью моря с подводной лодки, идущей на небольшой глубине, или для наблюдения за местностью из бункера используют прибор перископ (от греч. перескопо — смотрю вокруг, осматриваю). На рисунке 142 изображена схема зеркального перископа. Объясните его действие. Изготовьте перископ и выполните с ним наблюдения.
Объясните действия прибора (рис. 143). Для чего его можно использовать?
На заднем колесе велосипеда имеется устройство, отражающее падающий на него свет (например, от фар идущего сзади автомобиля), его называют уголковым отражателем. Простейший отражатель, применяемый для этой цели, может быть изготовлен из двух плоских зеркал, расположенных под углом 90° друг к другу.
Докажите, что падающие на такие зеркала лучи отразятся в направлении, противоположном направлению их падения.
В промышленных уголковых отражателях используют три плоских зеркала, расположенных под углами 90° друг к другу.
Это любопытно...
Как Архимед поджёг римский флот
Существует легенда о том, что Архимед с помощью зеркал сжёг римские корабли во время войны в 212г. до н.э., когда греческий город Сиракузы подвергся осаде римлян. До вражеских кораблей было очень далеко, около 150 м, и обстреливать их из катапульт, сконструированных Архимедом, не представлялось возможным. Архимед предложил отполировать до блеска щиты и сфокусировать лучи солнца на римских триерах. Греческие воины выполнили указания Архимеда, и вражеские корабли загорелись.
Другая легенда гласит, что Архимеду поджечь вражеские корабли помогли женщины Сиракуз. По его указу они поднялись на крепостную стену и направили солнечные лучи с помощью отполированной до блеска медной посуды на корабли римлян и подожгли их. Противник вынужден был отступить.
Ещё по одной версии Архимед вместе с древнегреческими учёными соорудил машину, состоящую из огромного бронзового многоугольного зеркала, набранного из небольших четырёхугольных зеркал. Каждое зеркало было закреплено на шарнирах, благодаря чему можно было подбирать углы поворота так, чтобы отражённые солнечные лучи фокусировались в одной точке. Но эту легенду, как и все предыдущие, учёные опровергли.
Старинная гравюра «Архимед, направляющий лучи на корабли римлян»
Некоторым учёным удалось повторить опыты, описанные в легендах об Архимеде. У других все попытки поджечь дерево на расстояние более 50 м успехом не увенчались.
А вот итальянские учёные в XX в. утверждали, что зеркала могли использоваться, но только для того, чтобы ослепить противника. Как только римские воины были ослеплены, греки запускали катапульты из смеси серы, смолы и селитры с крепостных стен по вражеским кораблям, и они загорались. Учёные полагают, что Архимед разработал метательный аппарат, в котором тетива спускалась в момент, когда ось стрелы совмещалась с «солнечным зайчиком». Скорее всего, когда вражеский флот подходил на расстояние порядка 50 м, зеркала расчехлялись и в корабли летели стрелы, наводимые «солнечными зайчиками».
Легенда о том, что Архимед с помощью зеркал поджёг римский флот, так и остаётся легендой, а попытки доказать или опровергнуть осаду Сиракуз продолжаются и поныне.
ПРЕЛОМЛЕНИЕ СВЕТА. ЗАКОН ПРЕЛОМЛЕНИЯ СВЕТА
Рассмотрим, как меняется направление луча при переходе его из воздуха в воду. В воде скорость света меньше, чем в воздухе. Среда, в которой скорость распространения света меньше, является оптически более плотной средой.
Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света.
Это значит, что скорость распространения света больше в оптически менее плотной среде. Например, в вакууме скорость света равна 300 ООО км/с, а в стекле — 200 000 км/с. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света.
-—
Рис. 144. Преломление света при переходе луча из воздуха в воду
Рис. 145. Схема преломления луча света при переходе из воздуха в воду
Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС — угол падения (а), угол DOB — угол преломления (у).
Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.
Вода — среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения (см. рис. 145):
Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.
При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления (рис. 146). При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.
Рис. 146. Зависимость угла преломления от угла падения
Для любой пары веществ с различной оптической плотностью можно написать:
1. Угол падения луча из воздуха в стекло равен 0°. Чему равен угол преломления?
2. Перечертите в тетрадь рисунок 147. Для каждого случая начертите примерно преломлённый луч, считая, что все изображённые тела изготовлены из стекла.
3. Положите на дно чайной чашки монету и расположите глаз так, чтобы край чашки закрывал её. Если в чашку налить воду, то монета станет видна (рис. 148). Почему?
В атмосфере Земли происходит преломление света, поэтому мы видим звёзды и Солнце выше их истинного расположения на небе.
где п — постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.
Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.
Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:
Как меняется направление луча света (см. рис. 144) после того, как в сосуд наливают воду? 2. Какие выводы получены из опытов по преломлению света (см. рис. 144, 145)? 3, Какие положения выполняются при преломлении света?
Рис. 147
Рис. 149
Рис. 148
В оптике часто приходится иметь дело с прохождением света сквозь тело, имеющее форму призмы, клина (рис. 149, а). Луч, падающий на призму (например, на её боковую грань), преломляется дважды: при входе в призму и при выходе из неё.
Перечертите в тетрадь изображённое на рисунке 149, б сечение приз мы (треугольник) и падающий на её грань луч. Постройте ход луч* сквозь призму. Покажите, что при прохождении сквозь треугольнун призму такой луч отклоняется к основанию треугольника.
В каждой из трёх закрытых коробок (они показаны на рисунке 150 i виде чёрных квадратов) находится одна или две треугольные приз мы; показан ход лучей через эти призмы. Нарисуйте расположени< призм в этих коробках.
ЛИНЗЫ. ОПТИЧЕСКАЯ СИЛА ЛИНЗЫ
Рис. 151. Виды линз: а — выпуклые; б — вогнутые
Рис. 152. Оптическая ось линзы
Для того чтобы управлять световыми пучками, т. е. изменять направление лучей, применяют специальные приборы, например лупу, микроскоп. Основной частью этих приборов является линза.
Линзами называются прозрачные тела, ограниченные с двух сторон сферическими поверхностями.
Линзы бывают двух видов — выпуклые и вогнутые.
Линза, у которой края намного тоньше, чем середина, является выпуклой (рис. 151, а).
Линза, у которой края толще, чем середина, является вогнутой (рис. 151, б).
Прямая АВ, проходящая через центры Сх и С2 (рис. 152) сферических поверхностей, ограничивающих линзу, называется оптической осью.
Направив на выпуклую линзу пучок лучей, параллельных оптической оси линзы, мы увидим, что после преломления в линзе эти лучи пересекают оптическую ось в одной точке (рис. 153). Эта точка называется фокусом
а)
б)
Рис. 153. Собирающая линза: а — прохождение лучей через фокус; б — изображение её на схемах
Рис. 154. Рассеивающая линза: а — прохождение лучей через фокус; б — изображение её на схемах
линзы. У каждой линзы два фокуса — по одному с каждой стороны линзы.
Расстояние от линзы до её фокуса называется фокусным расстоянием линзы и обозначается буквой F.
Если на выпуклую линзу направить пучок параллельных лучей, то после преломления в линзе они соберутся в одной точке — F (см. рис. 153). Следовательно, выпуклая линза собирает лучи, идущие от источника. Поэтому выпуклая линза называется собирающей.
При прохождении лучей через вогнутую линзу наблюдается другая картина.
Пустим пучок лучей, параллельных оптической оси, на вогнутую линзу. Мы заметим, что лучи из линзы выйдут расходящимся пучком (рис. 154). Если такой расходящийся пучок лучей попадёт в глаз, то наблюдателю будет казаться, что лучи выходят из точки F. Эта точка находится на оптической оси с той же стороны, с какой падает свет на линзу, и называется мнимым фокусом вогнутой линзы. Такую линзу называют рассеивающей.
б)
а)
б)
а)
Рис. 155. Преломление лучей линзами различной кривизны
Рис. 156. Увеличение линзы
Оптическая сила линзы — это величина, обратная её фокусному расстоянию.
Собирающая линза
Линзы с более выпуклыми поверхностями преломляют лучи сильнее, чем линзы с меньшей кривизной (рис. 155).
Если у одной из двух линз фокусное расстояние короче, то она даёт большее увеличение (рис. 156). Оптическая сила такой линзы больше.
Линзы характеризуются величиной, которая называется оптической силой линзы. Оптическая сила обозначается буквой D.
Оптическая сила линзы рассчитывается по формуле
За единицу оптической силы принята диоптрия (дптр).
1 диоптрия — это оптическая сила линзы, фокусное расстояние которой равно 1 м.
Если фокусное расстояние линзы меньше 1 м, то оптическая сила будет больше 1 дптр. В случае, когда фокусное расстояние линзы
больше 1 м, её оптическая сила меньше 1 дптр. Например,
если F = 0,2 м, то D = —= 5 дптр,
и,г м
если F = 2 м, то D = = 0,5 дптр.
2 М
Поскольку у рассеивающей линзы фокус мнимый, то условились считать её фокусное расстояние отрицательной величиной. Тогда и оптическая сила рассеивающей линзы будет отрицательной.
Оптическую силу собирающей линзы условились считать положительной величиной.
По рисунку 155 сравните оптические силы изображённых на нём линз.
Оптическая сила линзы равна -1,6 дптр. Каково фокусное расстояние этой линзы? Можно ли с её помощью получить действительное изображение?
С помощью линз можно не только собирать или рассеивать лучи света, но, как вам хорошо известно, и получать различные изображения предмета. С помощью собирающей линзы попытаемся получить изображение светящейся лампочки или свечи.
Рассмотрим приёмы построения изображений. Для построения точки достаточно всего двух лучей. Поэтому выбирают два таких луча,
1. Как по внешнему виду линз можно узнать, у какой из них короче фокусное расстояние? Какая из двух линз, имеющих разные фокусные расстояния, даёт большее увеличение? 3. Какую величину называют оптической силой линзы? Как называется единица оптической силы? 5 Оптическая сила какой линзы принимается за единицу? 6, Чем отличаются друг от друга линзы, оптическая сила одной из которых равна +2,5 дптр, а другой -2,5 дптр?
ИЗОБРАЖЕНИЯ, ДАВАЕМЫЕ ЛИНЗОЙ
Рис. 157. Прямое изображение свечи
ход которых известен. Это луч, параллельный оптической оси линзы, который, проходя сквозь линзу, пересечёт оптическую ось в фокусе. Второй луч проходит через центр линзы и не меняет своего направления.
Вы уже знаете, что по обе стороны от линзы на её оптической оси находится фокус линзы F. Если поместить свечу между линзой и её фокусом, то с той же стороны от линзы, где находится свеча, мы увидим увеличенное изображение свечи, её прямое изображение (рис. 157).
Если свечу расположить за фокусом линзы, то её изображение пропадёт, но по другую сторону от линзы, далеко от неё, появится новое изображение. Это изображение будет увеличенным и перевёрнутым по отношению к свече.
Расстояние от источника света до линзы возьмём больше двойного фокусного расстояния линзы (рис. 158). Его обозначим буквой d, d > 2F. Передвигая за линзой экран, мы можем получить на нём действительное, уменьшенное и перевёрнутое изображение источника света (предмета). Относительно линзы изображение будет находиться между фокусом и двойным фокусным расстоянием, т. е.
F < f < 2F.
Такое изображение можно получить с помощью фотоаппарата.
Если приближать предмет к линзе, то его перевёрнутое изображение будет удаляться от линзы, а размеры изображения станут увеличиваться. Когда предмет окажется между точками F и 2F, т. е. F < d < 2F, его действительное, увеличенное и перевёрнутое изображение будет находиться за двойным фокусным расстоянием линзы (рис. 159)
2 F<f.
Если предмет поместить между фокусом и линзой, т. е. d < F, то его изображение на экра-
Рис. 158. Изображение, даваемое линзой, когда расстояние от источника света больше двойного фокуса
Рис. 159. Изображение, даваемое линзой, когда предмет находится между фокусом и двойным фокусом
не не получится. Посмотрев на свечу через линзу, мы увидим мнимое, прямое и увеличенное изображение (рис. 160). Оно находится между фокусом и двойным фокусом, т. е.
Таким образом, размеры и расположение изображения предмета в собирающей линзе зависят от положения предмета относительно линзы.
В зависимости от того, на каком расстоянии от линзы находится предмет, можно получить или увеличенное изображение (F < d< 2 F), или уменьшенное (d > 2F).
Рассмотрим построение изображений, получаемых с помощью рассеивающей линзы.
Поскольку лучи, проходящие через неё, расходятся, то рассеивающая линза не даёт действительных изображений.
На рисунке 161 показано построение изображения предмета в рассеивающей линзе.
Рис. 160. Изображение, даваемое линзой, когда предмет находится между фокусом и линзой
Рис. 161. Построение изображения в рассеивающей линзе
Рассеивающая линза даёт уменьшенное, мнимое, прямое изображение, которое находится по ту же сторону от линзы, что и предмет. Оно не зависит от положения предмета относительно линзы.
Какое свойство линз позволяет широко использовать их в оптических приборах? 2. В зависимости от чего меняются изображения, даваемые собирающей линзой? 3. По рисункам 159 и 160 расскажите, как строилось изображение предмета и каковы свойства этого изображения. Где оно расположено? 4. Пользуясь рисунком 158, расскажите, при каких условиях линза даёт уменьшенное, действительное изображение предмета. 5. Почему изображения предметов на рисунках 158 и 159 являются действительными? 6. Приведите примеры использования линз в оптических приборах. 7. Почему вогнутая линза не даёт действительного изображения? 8, По рисунку 161 расскажите, как строится изображение в рассеивающей линзе. Каким оно бывает?
Рис. 162
Постройте изображение предмета, находящегося в двойном фокусе собирающей линзы. Укажите свойства этого изображения.
Постройте изображение предмета, расположение которого показано на рисунке 162.
Постройте изображение предмета, расположенного от собирающей линзы на расстоянии 4F и 3F.
Предмет расположен на расстоянии 4F от собирающей линзы. Его передвигают, приближая к линзе. Как будет меняться изображение предмета? Куда оно будет перемещаться?
Чтобы научиться правильно строить изображение предмета, даваемое линзой и более сложными оптическими приборами, чертёж нужно выполнять в такой последовательности:
1. Изобразить линзу и начертить её оптическую ось.
2. По обе стороны от линзы отложить её фокусные расстояния и двойные фокусные расстояния (на чертеже они имеют произвольную длину, но по обе стороны от линзы одинаковую).
3. Изобразить предмет там, где это указано в задании.
4. Начертить ход двух лучей, исходящих от крайней точки предмета.
5. Используя точку пересечения лучей, прошедших сквозь линзу (действительную или мнимую), нарисовать изображение предмета.
6. Сделать вывод: какое изображение получено и где оно расположено.
ГЛАЗ И ЗРЕНИЕ
Глаз иногда называют живым фотоаппаратом, так как оптическая система глаза, дающая изображение, сходна с объективом фотоаппарата, но она значительно сложнее.
Глаз человека (и многих животных) имеет почти шарообразную форму (рис. 163), он защищён плотной оболочкой, называемой склерой. Передняя часть склеры — роговая оболочка 1 прозрачна. За роговой оболочкой (роговицей) расположена радужная оболочка 2, которая у разных людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость.
В радужной оболочке есть отверстие — зрачок 3, диаметр которого в зависимости от освещения может изменяться примерно от 2 до 8 мм. Меняется он потому, что радужная оболочка способна раздвигаться. За зрачком расположено прозрачное тело, по форме похожее на собирающую линзу, — это хрусталик 4, он окружён мышцами 5, прикрепляющими его к склере.
За хрусталиком расположено стекловидное тело 6. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой 7 (сетчаткой). Сетчатка состоит из тончайших волокон, которые, как ворсинки, устилают глазное дно. Они представляют собой разветвлённые окончания зрительного нерва, чувствительные к свету.
Как получается и воспринимается глазом изображение?
Свет, падающий в глаз, преломляется на передней поверхности глаза, в роговице, хруста-
Рис. 163. Глаз человека
Рис. 164. Формирование изображения на сетчатке глаза
лике и стекловидном теле (т. е. в оптической системе глаза), благодаря чему на сетчатке образуется действительное, уменьшенное, перевёрнутое изображение рассматриваемых предметов (рис. 164).
Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное впечатление, видит предметы. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.
А каким образом создаётся на сетчатке чёткое изображение, когда мы переводим взгляд с удалённого предмета на близкий или наоборот?
В оптической системе глаза в результате его эволюции выработалось замечательное свойство, обеспечивающее получение изображения на сетчатке при разных положениях предмета. Что же это за свойство?
Кривизна хрусталика, а значит, и его оптическая сила могут изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика сравнительно невелика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна, а следовательно, и оптическая сила увеличиваются.
Способность глаза приспосабливаться к видению как на близком, так и на далёком расстоянии называется аккомодацией глаза (в пер. с лат. «приспособление»). Предел аккомодации наступает, когда предмет находится на расстоянии 12 см от глаза. Расстояние наилучшего видения (это расстояние, при котором детали предмета можно рассматривать без напряжения) для нормального глаза равно 25 см. Это следует учитывать, когда пишете, читаете, шьёте и т. п.
Какое преимущество даёт зрение двумя глазами?
Во-первых, мы видим большее пространство, т. е. увеличивается поле зрения. Во-вторых, зрение двумя глазами позволяет различать, какой предмет находится ближе и какой — дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличные друг от друга изображения, мы как бы видим предметы слева и справа. Чем ближе предмет, тем заметнее это различие, оно и создаёт впечатление разницы в расстояниях, хотя, конечно, изображения сливаются в нашем сознании в одно. Благодаря зрению двумя глазами мы видим предмет объёмным, не плоским.
1. Используя дополнительную литературу и Интернет, начертите схему построения изображения в фотоаппарате.
2. Подготовьте презентацию о современных фотоаппаратах и их использовании в быту и технике.
Это любопытно...
Близорукость и дальнозоркость. Очки
Благодаря аккомодации изображение рассматриваемых предметов получается как раз на сетчатке глаза. Это выполняется, если глаз нормальный.
Глаз называется нормальным, если он в ненапряжённом состоянии собирает параллельные лучи в точке, лежащей на сетчатке (рис. 165, а). Наиболее распространены два недостатка глаза — близорукость и дальнозоркость.
Близоруким называется такой глаз, у которого фокус при спокойном состоянии глазной мышцы лежит внутри глаза (рис. 165, б). Близорукость
1. Как получается и воспринимается изображение глазом? 2. Как создаётся чёткое изображение на сетчатке, когда переводят взгляд с удалённого предмета на близкий? 3. Какое преимущество даёт зрение двумя глазами?
может быть обусловлена большим удалением сетчатки от хрусталика по сравнению с нормальным глазом. Если предмет расположен на расстоянии 25 см от близорукого глаза, то изображение предмета получится не на сетчатке (как у нормального глаза), а ближе к хрусталику, впереди сетчатки. Чтобы изображение оказалось на сетчатке, нужно приблизить предмет к глазу. Поэтому у близорукого глаза расстояние наилучшего видения меньше 25 см.
Дальнозорким называется глаз, у которого фокус при спокойном состоянии глазной мышцы лежит за сетчаткой (рис. 165, в).
Дальнозоркость может быть обусловлена тем, что сетчатка расположена ближе к хрусталику по сравнению с нормальным глазом. Изображение предмета получается за сетчаткой такого глаза. Если предмет удалить от глаза, то изображение попадает на сетчатку, отсюда и название этого недостатка — дальнозоркость.
Разница в расположении сетчатки даже в пределах одного миллиметра уже может приводить к заметной близорукости или дальнозоркости.
Люди, имевшие в молодости нормальное зрение, в пожилом возрасте становятся дальнозоркими. Это объясняется тем, что мышцы, сжимающие хрусталик, ослабевают и способность аккомодации уменьшается. Происходит это и из-за уплотнения хрусталика, теряющего способность сжиматься. Поэтому изображение получается за сетчаткой.
Близорукость и дальнозоркость устраняются применением линз. Изобретение очков явилось великим благом для людей, имеющих недостатки зрения.
Какие же линзы следует применять для устранения этих недостатков зрения?
У близорукого глаза изображение получается внутри глаза впереди сетчатки. Чтобы оно передвинулось на сетчатку, нужно уменьшить оптическую силу преломляющей системы глаза. Для этого применяют рассеивающую линзу (рис. 166, а).
Рис. 165. Недостатки зрения
Рис. 166. Коррекция недостатков зрения с помощью линз
а)
б)
Оптическую силу системы дальнозоркого глаза нужно, наоборот, усилить, чтобы изображение попало на сетчатку. Для этого используют собирающую линзу (рис. 166,6).
Итак, для исправления близорукости применяют очки с вогнутыми, рассеивающими линзами. Если, например, человек носит очки, оптическая сила которых равна -0,5 дптр (или -2 дптр, -3,5 дптр), то, значит, он близорукий.
В очках для дальнозорких глаз используют выпуклые, собирающие линзы. Такие очки могут иметь, например, оптическую силу +0,5 дптр, +3 дптр, +4,25 дптр.
САМОЕ
ГЛАВНОЕ
■ Свет — это видимое излучение.
■ Источниками света называют все тела, которые излучают свет.
■ Если свет распространяется в однородной и прозрачной среде, то он распространяется прямолинейно.
■ Точечным источником света называют светящееся тело, размеры которого намного меньше расстояния, на котором мы оцениваем его действие.
■ Закон отражения света: отражённый луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр к отражающей поверхности, проведённый в точке падения луча.
Угол отражения равен углу падения:
■ Закон преломления света: преломлённый луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр, проведённый в точке падения луча к границе раздела двух сред.
Отношение синуса угла падения к синусу угла отражения — величина постоянная для двух сред:
где п — показатель преломления.
■ Фокусное расстояние линзы — это расстояние от линзы до её фокуса.
Изображения, даваемые собирающей линзой: действительное, уменьшенное, перевёрнутое, если предмет находится за двойным фокусом: 2F < d;
действительное, увеличенное, перевёрнутое, если предмет находится между фокусом и двойным фокусом:;
мнимое, прямое, увеличенное, если предмет находится между фокусом и линзой:
1. Прямолинейное распространение света подтверждают:
A. солнечные и лунные затмения Б. возникновение радуги
B. миражи в пустыне Г. вспышки молнии
2. Оптическая сила линзы — это:
A. величина, обратная её фокусному расстоянию
Б. линия, вдоль которой распространяется энергия от источника света
B. расстояние от линзы до её фокуса
Г. величина, характеризующая скорость распространения света
3. Угол падения на плоское зеркало изменился от 45 до 60°. На сколько изменится угол между падающим и отражённым лучом?
А. на 15°
Б. на 105°
В. на 30°
Г. не изменится
4. Какие из представленных на рисунке линз являются собирающими?
5. Какая из линз имеет максимальное фокусное расстояние?
6. Свет в однородной прозрачной среде распространяется прямолинейно — это:
A. закон отражения света
Б. закон преломления света
B. закон прямолинейного распространения света Г. данное утверждение не является законом
-> 1. Выполните задания, предложенные в электронном
приложении.
2. На сайте http://class-fizika.narod.ru найдите тесты по теме «Световые явления» и проверьте себя.