А. Г. Мордкович Н. П. Николаев

y-b=kx

Assectiona

Углублённый уровень

7/

часть

А. Г. Мордкович Н. П. Николаев

Assopa

часть 2

УЧЕБНИК

для общеобразовательных организаций (углублённый уровень)

Рекомендовано Министерством просвещения Российской Федерации

11-е издание, стереотипное

Москва 2019

УДК 373.167.1:512 ББК 22.141я721+22.14я721 М79

На учебник получены положительные заключения по результатам трёх экспертиз: научной (Российская академия наук, № 004946 от 19.12.2016), педагогической (Российская академия наук, № 005053 от 19.12.2016) и общественной (РШБА, № 0Э/16-0381 от 26.12.2016)

Мордкович А. Г.

М79 — Алгебра. 7 класс. Учебник для общеобразовательных организаций (углублённый уровень). В 2 ч. Ч. 2 / А. Γ . Мордкович, Н. П. Николаев. — 11-е изд., стер. — М.: Мнемозина, 2019. — 231 с.: ил.

ISBN 978-5-346-04408-6

Учебник написан в соответствии с ФГОС ООО, в нём реализованы принципы проблемного, развивающего и опережающего обучения.

Подбор и последовательность учебного материала позволяют изучать предмет как на базовом, так и на углублённом уровне в соответствии с Примерной основной общеобразовательной программой.

Вторая часть учебника содержит практический материал. Значительный объём упражнений и задач позволит учителю построить индивидуальную образовательную траекторию обучения каждому учащемуся.

> УДК 373.167.1:512 ББК 22.141я721+22.14я721

- © «Мнемозина», 2009
- © «Мнемозина», 2017, с изменениями
- © «Мнемозина», 2019
- © Оформление. «Мнемозина», 2019 Все права защищены

ПРЕДИСЛОВИЕ

Дорогие семиклассники!

Вы держите в руках вторую, практическую часть учебника для изучения алгебры в 7-м классе, первая часть — теоретическая. Обе части неотделимы друг от друга:

- нельзя изучить курс, пользуясь только первой частью и не решая задачи из второй;
- нельзя изучить курс, пользуясь только практической частью учебника, не читая теории.

Во всех параграфах представлены упражнения трёх уровней сложности. Первый уровень — устные и полуустные упражнения; второй — задания средней трудности (слева от номеров таких заданий поставлен значок • третий — задания повышенной трудности (слева от номеров таких заданий помещён значок • слева от номеров таких заданий помещён значок • слешниству упражнений второго уровня и ко всем упражнениям третьего уровня приведены ответы.

Прежде чем решать упражнения из того или иного параграфа второй части, откройте первую часть учебника и прочитайте материал соответствующего параграфа. А ещё лучше — положите первую часть рядом с собой и посматривайте в неё в случае возникших затруднений, тем более что в ряде мест даны непосредственные ссылки на те фрагменты учебника, которые следует прочитать, чтобы решать соответствующие задания из второй части учебника. Значок укажет на номер нужной страницы.

Учебник рассчитан на учащихся классов с углублённым изучением математики. Поэтому вам встретится много упражнений, при решении которых надо проявить смекалку, осуществить какие-то нестандартные шаги. Естественно, что в таких случаях далеко не всегда в первой части учебника вы сможете найти подсказки, будьте к этому готовы.

Желаем вам успехов!

МАТЕМАТИЧЕСКИЙ язык. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

ЧИСЛОВЫЕ И АЛГЕБРАИЧЕСКИЕ **ВЫРАЖЕНИЯ**

Используя термины «сумма», «разность», «произведение» и «частное», прочитайте выражение и найдите его значение:

a)
$$\left(2\frac{1}{2} + 3\frac{1}{3}\right) \cdot 6;$$
 B) $2\frac{1}{2} \cdot 6 + 3\frac{1}{3};$

B)
$$2\frac{1}{2} \cdot 6 + 3\frac{1}{3}$$
;

6)
$$2\frac{1}{2} + 3\frac{1}{3} \cdot 6$$

6)
$$2\frac{1}{2} + 3\frac{1}{3} \cdot 6$$
; r) $2\frac{1}{2} \cdot 2 + 3\frac{1}{3} \cdot 3$.

a)
$$\left(4\frac{1}{3}+3\frac{1}{5}\right)$$
: 113; b) $17:\left(4\frac{1}{3}-3\frac{1}{5}\right)$;

B)
$$17:\left(4\frac{1}{3}-3\frac{1}{5}\right);$$

6)
$$\left(6-7\frac{1}{8}\right)\cdot\left(\frac{2}{9}+\frac{2}{3}\right)$$
;

6)
$$\left(6-7\frac{1}{8}\right)\cdot\left(\frac{2}{9}+\frac{2}{3}\right)$$
; r) $\left(15-4\frac{1}{8}\right)\cdot\left(3\frac{14}{15}-2\frac{3}{5}\right)$.

1.3

Запишите числовое выражение и найдите его значение:

- а) сумма числа 3¹/₂ и произведения чисел 2,5 и 16;
- б) разность между произведением чисел $2\frac{1}{7}$ и $2\frac{4}{5}$ и числом 2,4;
- в) произведение суммы чисел 2,4 и 5,6 и их разности;
- г) частное от деления разности чисел $1\frac{6}{19}$ и $\frac{25}{38}$ на большее из них.

- 1.4 Запишите числовое выражение и найдите его значение:
 - а) сумма числа $2\frac{1}{2}$ и произведения чисел 2,4 и 15;
 - б) разность между произведением чисел $2\frac{2}{25}$ и $1\frac{9}{16}$ и числом 1,25;
 - в) произведение суммы чисел 3,8 и 5,2 и их разности;
 - г) частное от деления разности чисел $4\frac{8}{15}$ и $1\frac{1}{3}$ на меньшее из них.
- 1.5 Составьте числовое выражение, значение которого равно 7, используя при этом:
 - а) только одно действие; в) вычитание и деление;
 - б) сложение и умножение; г) сложение и вычитание.
- 1.6 Составьте числовое выражение, значение которого равно -2,5, используя при этом:
 - а) только одно действие; в) вычитание и умножение;
 - б) сложение и деление; г) сложение и вычитание.
- 1.7 О Составьте числовое выражение, значение которого равно $\frac{5}{6}$, используя при этом:
 - а) только одно действие; в) умножение и деление;
 - б) сложение и вычитание; г) сложение и деление.
- 1.8 О Составьте числовое выражение, значение которого равно $-3\frac{1}{5}$, используя при этом:
 - а) только одно действие; в) деление и умножение;
 - б) сложение и деление; г) сложение и умножение.
- 1.9 О Даны два числа 18 и 12. Запишите и найдите значение:
 - а) произведения большего из чисел и разности квадратов этих чисел;
 - б) частного от деления меньшего из этих чисел на их полусумму;
 - в) суммы большего из этих чисел и частного от деления большего на меньшее;
 - г) разности произведения этих чисел и их частного.

Даны два числа 7,2 и 6,4. Запишите и найдите значение: 1.10 O

- а) произведения большего из чисел и полуразности этих чисел;
- б) частного от деления меньшего из этих чисел на разность их квадратов;
- в) суммы большего из этих чисел и частного от деления большего на меньшее:
- г) разности произведения этих чисел и их частного.

1.11 О Какие свойства действий позволяют, не выполняя вычислений. утверждать, что верны равенства:

a)
$$247 + 35 = 35 + 247$$
:

6)
$$96 \cdot 18 = 18 \cdot 96$$
;

B)
$$14 + (21 + 971) = (14 + 21) + 971$$
:

$$\Gamma$$
) 13 · (4 + 18) = 13 · 4 + 13 · 18?

Рассмотрите решение примера 1 в § 1 учебника*.

Найдите значение числового выражения:

1.12 a)
$$7:2\frac{1}{3}+4:1\frac{1}{3}$$
;

B)
$$8\frac{1}{7} - 4\frac{1}{7} : 3\frac{5}{8}$$
;

6)
$$\left(12\frac{2}{5}-6\frac{1}{5}\right)$$
: $7\frac{3}{4}$;

r)
$$2\frac{1}{3} \cdot \frac{6}{7} - \left(1\frac{11}{12} - \frac{1}{3}\right) : 4\frac{3}{4}$$
.

1.13 a)
$$(0.018 + 0.982) : (8 \cdot 0.5 - 0.8);$$

6)
$$(0,008 + 0,992)$$
: $(5 \cdot 0,6 - 1,4)$.

Вычислите наиболее рациональным способом:

1.14 a)
$$\frac{1}{2} + 2\frac{2}{3} + 1\frac{1}{2} + 1\frac{1}{3}$$
;

1.15

B)
$$3\frac{2}{5} \cdot 2\frac{3}{7} \cdot 5 \cdot 7$$
;

6)
$$\left(\frac{3}{14} - \frac{2}{7} + \frac{1}{2}\right) \cdot 14;$$

r)
$$\left(12\frac{2}{9} + 24\frac{2}{3} - 16\frac{2}{15}\right)$$
: 2.

a)
$$4.16 + 2.5 + 6.04 + 3.5$$
; B) $-1.06 + 0.04 - 7.04 + 2.16$;

6)
$$7.3 + 1.6 - 0.3 - 0.6$$
; r) $18.9 - 6.8 - 5.2 + 4.1$.

$$(5)$$
 18.9 - 6.8 - 5.2 + 4.1.

6)
$$42,4\cdot\frac{3}{4}-2,4\cdot\frac{3}{4}$$
;

r)
$$6\frac{1}{5} \cdot 4.8 + 6\frac{1}{5} \cdot 5.2$$
.

^{*} Часть 1 (здесь и далее).

Найдите: 1.17

а) число секунд в а часах;

б) число минут в х сутках;

в) скорость в метрах в минуту, если она равна x км/ч;

г) скорость в километрах в час, если она равна и м/с.

Найдите значение числового выражения: 1.18

a)
$$\left(8\frac{7}{12} - 2\frac{17}{36}\right) \cdot 2,7 - 4\frac{1}{3} : 0,65;$$

$$\text{ 5) } \left(1\frac{11}{24} + \frac{13}{36}\right) \cdot 1,44 - \frac{8}{15} \cdot 0,5625;$$

B)
$$\left(6\frac{8}{15} - 4\frac{21}{45}\right) \cdot 4,5 - 2\frac{1}{6} : 0,52;$$

r)
$$\left(\frac{9}{22} + 1\frac{12}{33}\right) \cdot 1,32 - \frac{8}{13} \cdot 0,1625.$$

Докажите, что значение дроби равно нулю: 1.19

a)
$$\frac{\left(2\frac{1}{10}:2-1,8\right)\cdot0,4+0,3}{2\cdot15\cdot20\cdot5}$$
;

a)
$$\frac{\left(2\frac{1}{10}:2-1,8\right)\cdot0,4+0,3}{3.15:22.5}$$
; 6) $\frac{\left(1,24-1\frac{1}{25}\right)\cdot2,5-\frac{1}{6}:\frac{1}{3}}{1.4:0.1-2}$.

Докажите, что данная дробь не имеет смысла: 1.20

a)
$$\frac{3,5 \cdot 1,24}{10 + 1,6 : \left(\frac{3}{5} \cdot 0,4 - 0,4\right)};$$
 6) $\frac{4,2 : 2 - 1}{\frac{1}{9} + \frac{5}{9} \cdot \left(0,8 \cdot \frac{1}{6} - \frac{1}{3}\right)}.$

6)
$$\frac{4,2:2-1}{\frac{1}{9}+\frac{5}{9}\cdot\left(0,8\cdot\frac{1}{6}-\frac{1}{3}\right)}$$

Рассмотрите решение примера 2 в § 1 учебника.

Найдите значение выражения:

a) 8c + 12d при c = 3, d = -2:

б)
$$u - 3v$$
 при $u = 6$, $v = -2$:

в)
$$8z - 11t$$
 при $z = -5, 5, t = -4$;

г)
$$5p - 4q$$
 при $p = -\frac{2}{5}$, $q = 0.5$.

5x - 3y, если: 1.22

1.21

a)
$$x = 7$$
, $y = 4$; b) $x = 12\frac{2}{5}$, $y = 9\frac{2}{3}$;

6)
$$x = 6.5$$
, $y = 2.1$; r) $x = 18$, $y = 7.4$.

$$\frac{6a+7b}{3a-4b}$$
, если:

a)
$$a = 20$$
, $b = 12$;

B)
$$a = 10.8, b = 6;$$

6)
$$a = 2,4$$
, $b = 0,8$; r) $a = 12$, $b = 5,6$.

r)
$$a = 12$$
, $b = 5.6$

1.24

Преобразуйте выражение и найдите его значение:

а)
$$2a + 2b$$
, если $a = -4,1$, $b = 4,05$;

б)
$$2.5a - 7.5a + 1$$
, если $a = 0.1$;

в)
$$5x - 5y$$
, если $x = -6.2$, $y = -6.02$;

г)
$$2\frac{1}{3}b - 4 + 1\frac{2}{3}b$$
, если $b = \frac{3}{4}$.

Упростите выражение и найдите его значение:

$$\blacksquare$$
 a) $-6a + 7b + 3a - 4b$, если $a = 3, 2, b = 4, 2$;

б)
$$1.5x - 9y - (y + 1.5x)$$
, если $x = 0.781$, $y = 0.9$;

в)
$$14a - 12b - a - b$$
, если $a = \frac{2}{7}$, $b = -\frac{5}{7}$;

г)
$$0.7y - (0.2x - 0.3y) + 0.2x$$
, если $x = 3.245$, $y = -0.14$.

a)
$$3(2x + y) - 4(2y - x)$$
, если $x = 0, 2, y = -\frac{2}{5}$;

6)
$$7\left(\frac{2}{7}x - \frac{3}{14}y\right) - 4\left(\frac{7}{2}x - \frac{3}{8}y\right)$$
, если $x = \frac{5}{6}$, $y = 1$;

в)
$$2(4a-0.5b)-(3a-7b)$$
, если $a=-0.4$, $b=\frac{1}{3}$;

г)
$$-6\left(\frac{2}{3}a - \frac{1}{6}b\right) + 4\left(0,75a - \frac{1}{12}b\right)$$
, если $a = -1$, $b = \frac{3}{2}$.

1.27

Пусть a см и b см — длины сторон прямоугольника, P см — его периметр, S см² — площадь. Заполните таблицу:

a	1	2	4			1,2	0,8	
ь	1	3,5		2	$\frac{1}{3}$			$\frac{2}{9}$
P				14		3,6		449
s			12		$\frac{7}{3}$		0,48	

1.28 О Известно, что
$$a + b = 10$$
, $c = 7$. Найдите:

- a) a + b + 2c; B) $\frac{a+b+c}{2}$;
- 6) $\frac{a+b}{2}-c$; r) $\frac{7(a+b)+2c}{3c-1}$.
- а) Если a b = 12, то чему равно b a? 1.29
 - б) Если $\frac{b}{a} = 3$, то чему равно $\frac{a}{b}$?
 - в) Если c-d=0, то чему равно d-c?
 - г) Если $\frac{c}{d} = 0,3$, то чему равно $\frac{d}{c}$?

Рассмотрите решение примера 2 в § 1 учебника.

1.30 Сравните значения выражений
$$a^2 - b^2$$
 и $(a - b)(a + b)$, если:

- a) a = 17, b = 13;
- B) a = -13, b = -5;
- 6) a = -15, b = 12; r) a = 5, b = -4.

1.31 О Найдите значения выражений
$$\frac{a^2 - b^2}{a - b}$$
 и $a + b$, если:

- a) a = 1, b = 2;
- B) a = 1,4, b = 1:
- 6) a = 3, b = 1:
- r) a = -3, b = 1.

1.32 О Вычислите
$$\frac{2x^2-2y^2}{(x+y)(x-y)}$$
, если:

- a) x = 2, y = 3:
- B) x = -2, y = 0;
- 6) $x = \frac{3}{2}$, $y = \frac{1}{3}$; r) x = 1,3, y = -0,5.

1.33 О Сравните значения выражений
$$x^2 - 2xy + y^2$$
 и $(x - y)^2$, если:

- a) x = 8, y = 3; b) x = -10, y = -2.6; c) x = 7.6, y = -1.4; r) x = -1.5, y = 3.

1.34 О Найдите значения выражений
$$\frac{a^2 - 2ab + b^2}{a - b}$$
 и $a - b$, если:

- a) a = -13, b = 12; B) a = -3.5, b = -2.5;
- 6) a = 2,4, b = 2,3; r) a = 7,4, b = -3,6.

При каких значениях переменных имеет смысл выражение:

a)
$$x^2 + 5$$
; 6) $\frac{3}{a}$;

B)
$$7y^2 + 8$$
; r) $\frac{9}{5}$?

r)
$$\frac{9}{5b}$$
?

1.36 a)
$$\frac{12}{x+3}$$
; 6) $\frac{a-6}{a+2}$; B) $\frac{25}{9+d}$; r) $\frac{47+c}{c+13}$?

6)
$$\frac{a-6}{a+2}$$

B)
$$\frac{25}{9+d}$$

r)
$$\frac{47+c}{c+12}$$

a)
$$\frac{z}{5z-15}$$
; 6) $\frac{t}{45t-90}$; B) $\frac{m}{9m-81}$; r) $\frac{n}{36-6n}$?

B)
$$\frac{m}{9m - 81}$$
;

r)
$$\frac{n}{26-6n}$$
?

1.38 Значение дроби
$$\frac{a}{b} = 0$$
. Что можно сказать о дроби $\frac{b}{a}$? Ответ объясните.

- 1.39 В начале года был сделан вклад в банк на сумму а р. Банк даёт р % годовых.
 - а) Составьте выражение для вклада в конце третьего года хране-
 - б) Какая сумма будет на счету вкладчика в конце третьего года хранения, если a = 10000, p = 10 %?

Найдите последнюю цифру числа а: 1.40

- a) $a = 213 \cdot 488 \cdot 204 \cdot 317$;
- 6) $a = 1234 \cdot 2345 \cdot 3456 \cdot 4567$.

Вычислите наиболее рациональным способом:

6)
$$41514 - 1275 \cdot 514 + 1274 \cdot 514$$
.

1.42 O a)
$$\frac{17}{441} \cdot \frac{21}{576} \cdot \frac{72}{289} \cdot 51 \cdot 7;$$

6)
$$\frac{19}{529} \cdot \frac{23}{625} \cdot \frac{75}{361} \cdot 23 \cdot 19 \cdot 125$$
.

1.43 • Не производя вычислений, докажите, что
$$a : b$$
 (запись $a : b$ означает, что натуральное число a делится без остатка на натуральное число b):

a)
$$a = 315 \cdot 227 \cdot 434 \cdot 956 \cdot 735$$
, $b = 100$;

6)
$$a = 315 \cdot 227 \cdot 434 \cdot 956 \cdot 735$$
, $b = 180$;

B)
$$a = 315 \cdot 227 \cdot 434 \cdot 956 \cdot 735$$
, $b = 175$;

r)
$$a = 315 \cdot 227 \cdot 434 \cdot 956 \cdot 735$$
, $b = 6300$.

Не производя вычислений, докажите, что $a \neq b$: 1.44

a)
$$a = 493 \cdot 228$$
, $b = 231 \cdot 486$;

6)
$$a = 448 \cdot 656$$
, $b = 452 \cdot 654$.

Сравните числа a и b:

a) $a = 215 \cdot 428 - 577$, $b = 216 \cdot 429 - 576$: 1.45 O

6)
$$a = 513 \cdot 642 - 274 \cdot 773$$
, $b = 513 \cdot 642 - 273 \cdot 772$.

1.46 • a)
$$a = \frac{991}{993}$$
, $b = \frac{779}{781}$; 6) $a = \frac{4009}{4006}$, $b = \frac{2009}{2006}$.

1.47 **o** a)
$$a = \frac{791}{993}$$
, $b = \frac{792}{991}$; 6) $a = \frac{6450}{7360}$, $b = \frac{644}{737}$.

1.48 a)
$$a = \frac{1}{411} \cdot \frac{1}{412} \cdot \frac{1}{413}, b = \frac{1}{63990006};$$

6)
$$a = \frac{1}{393} \cdot \frac{1}{394} \cdot \frac{1}{395}$$
, $b = \frac{1}{64009990}$.

1.49 a)
$$a = \frac{1}{282} + \frac{3}{284} + \frac{6}{285}, b = \frac{1}{28}$$

6)
$$a = \frac{2}{477} + \frac{13}{478} + \frac{5}{479}$$
, $b = \frac{1}{24}$.

1.50 О Докажите, что:

a)
$$\left| \frac{934}{933} - \frac{948}{947} \right| = \frac{1}{933} - \frac{1}{947}$$

a)
$$\left| \frac{934}{933} - \frac{948}{947} \right| = \frac{1}{933} - \frac{1}{947};$$
 6) $\left| \frac{785}{787} - \frac{783}{785} \right| = 2\left(\frac{1}{785} - \frac{1}{787} \right).$

В выражении $7 \cdot 6 + 24 : 3 - 2$ расставьте скобки так, чтобы его 1.51 значение было:

- а) наименьшим;
- б) наибольшим.

Составьте числовое выражение, значение которого равно 100, ис-1.52 пользуя перечисленные цифры и не меняя порядок их следования:

- a) 1, 2, 3, 4, 5;
- б) пять единиц;
- в) пять пятёрок;
- г) 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Составьте числовые выражения, используя в их записи только 1.53 четыре четвёрки, так, чтобы эти выражения принимали следующие значения: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

ЧТО ТАКОЕ МАТЕМАТИЧЕСКИЙ **ЯЗЫК**

Запишите на математическом языке:

- a) Полусумму чисел z и x; 2.1
- \mathbf{B}) квадрат числа \mathbf{x} ;
- б) полуразность чисел р и q; г) куб числа у.
- а) Сумму числа х и произведения чисел а и b; 2.2
 - б) разность числа y и частного от деления числа a на число b;
 - в) произведение числа а и суммы чисел b и c;
 - г) частное от деления числа z на разность чисел x и y.
- а) Утроенную сумму чисел т и п; 2.3
 - б) удвоенную разность чисел р и q;
 - в) произведение полусуммы чисел х и у и числа z;
 - r) частное от деления числа p на полуразность чисел a и b.
- а) Квадрат суммы чисел а и b; 2.4
 - б) куб разности чисел х и у;
 - в) разность квадратов чисел t и w;
 - Γ) сумму кубов чисел c и d.
- а) Отношение суммы чисел т и п к их произведению; 2.5
 - б) отношение разности чисел с и d к удвоенной сумме этих чисел;
 - в) отношение суммы квадратов чисел m и n к их произведению;
 - г) отношение утроенной разности кубов чисел р и q к их удвоенной сумме.

Переведите с математического языка на обычный следующее утверждение:

2.6 a)
$$a + (b + c) = (a + b) + c$$
; b) $a + 0 = a$;

6)
$$a - (b + c) = a - b - c$$
; r) $a \cdot 1 = a$.

2.7 a)
$$a \cdot 0 = 0;$$
 b) $\frac{a}{1} = a;$

б)
$$\frac{0}{a} = 0$$
, где $a \neq 0$; г) $a \cdot \frac{1}{a} = 1$, где $a \neq 0$.

Используя математические термины, прочитайте выражение:

a)
$$a^2 + b^2$$
; 6) $x^2 - y^2$; B) $z^3 + t^3$; r) $m^3 - n^3$.

B)
$$z^3 + t^3$$
:

r)
$$m^3 - n^3$$
.

a)
$$(s + p)^2$$
;

б)
$$(u - v)^2$$

r)
$$(f - q)^3$$
.

a)
$$\frac{x+y}{2}$$

$$\delta$$
) $\frac{a-b}{2}$

a)
$$\frac{x+y}{2}$$
; 6) $\frac{a-b}{2}$; B) $\frac{xy}{2(x-y)}$; r) $\frac{x+y}{xy}$.

$$\Gamma$$
) $\frac{x+y}{xy}$.

a)
$$3(x+y)^2$$
; 6) $2(a+b)^3$; B) $2(p-q)^2$; r) $3(z-r)^3$.

6)
$$2(a+b)^3$$

B)
$$2(p-q)^2$$

r)
$$3(z-r)^3$$
.

a)
$$\frac{(m-n)^2}{2}$$
; 6) $\frac{(a+b)^3}{3}$; B) $\frac{(t+w)^2}{2}$; r) $\frac{(p-q)^2}{4}$.

6)
$$\frac{(a+b)^3}{3}$$

B)
$$\frac{(t+w)^2}{2}$$
;

r)
$$\frac{(p-q)^2}{4}$$

Запишите утверждение на математическом языке:

2.13

- а) От перестановки мест слагаемых сумма не изменится;
- б) от перестановки мест множителей произведение не изменится;
- в) чтобы к числу прибавить сумму двух чисел, можно сначала прибавить к нему первое слагаемое, а затем к полученной сумме - второе слагаемое;
- г) чтобы к числу прибавить разность двух чисел, можно сначала прибавить к нему уменьшаемое, а затем из полученной суммы вычесть вычитаемое.

2.14

- а) Для того чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные результаты сложить:
- б) для того чтобы умножить число на разность двух чисел, можно это число умножить на уменьшаемое и на вычитаемое, а затем из первого произведения вычесть второе;
- в) для того чтобы из числа вычесть сумму двух чисел, можно из этого числа вычесть первое слагаемое, а затем из полученной разности вычесть второе слагаемое;
- г) для того чтобы из числа вычесть разность двух чисел, можно из этого числа вычесть уменьшаемое, а затем к полученной разности прибавить вычитаемое.

2.15

- а) Величина дроби не изменится, если её числитель и знаменатель умножить на одно и то же число, не равное нулю;
- б) величина дроби не изменится, если её числитель и знаменатель разделить на одно и то же число, не равное нулю;
- в) чтобы умножить дробь на дробь, нужно перемножить отдельно числители и знаменатели, первое произведение взять в качестве числителя произведения, а второе — в качестве его знаменателя;
- г) чтобы разделить одну дробь на другую, надо делимое умножить на число, обратное делителю.

2.17

глава 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

- a) Отношение чисел а и b равно отношению чисел х и у;
 б) сумма чисел х и 4 так относится к числу у, как 3 относится к 5;
 в) отношение разности чисел с и d к их сумме равно отношению числа d к квадрату числа с;
 - г) разность чисел x и y так относится к числу y, как число x относится к сумме чисел x и y.
 - а) Чтобы найти число b, составляющее p % от числа a, надо умножить число a на p и разделить полученное произведение на 100;
 - б) чтобы найти число a, зная, что p % от него равны числу b, надо число b умножить на 100 и полученное произведение разделить на p;
 - в) в верной пропорции произведение крайних членов равно произведению средних;
 - г) если в верной пропорции поменять местами средние члены или крайние, то полученные пропорции также верны.

Запишите данное утверждение и ответы на поставленные вопросы на математическом языке:

- 2.18 Периметр *P* прямоугольника равен удвоенной сумме его сторон *a* и *b*.
 - а) Чему равен полупериметр р прямоугольника?
 - б) Как найти сторону прямоугольника, зная полупериметр и другую его сторону?
 - в) Как найти сторону прямоугольника, зная периметр и другую его сторону?
 - г) Чему равен периметр квадрата со стороной а?
- 2.19 Площадь S прямоугольника равна произведению его сторон а и b.
 - а) Как найти сторону прямоугольника, зная его площадь и другую сторону?
 - б) Как найти площадь квадрата, зная его сторону?
- 2.20 Скорость движения v равна отношению расстояния s ко времени движения t.
 - а) Как найти расстояние, пройденное телом, зная его скорость и время движения?
 - б) Как найти время движения, зная скорость и расстояние, пройденное телом?

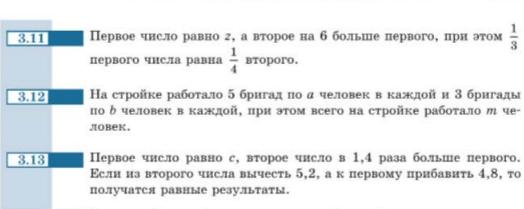
- 2.21
- Запишите на математическом языке:
- а) чему равен объём V куба со стороной a;
- б) чему равна площадь S поверхности куба со стороной a;
- в) чему равен объём V прямоугольного параллелепипеда, если его измерения равны a, b, c;
- r) чему равна площадь S поверхности прямоугольного параллелепипеда, если его измерения равны a, b, c.
- 2.22
- а) Найдите значение выражения x + y, если x полусумма чисел 38,5 и 12,36, а y утроенная разность чисел 24,39 и 16,2.
 - б) Найдите значение выражения a b, если a полуразность чисел 68,56 и 25,3, а b удвоенная сумма чисел 2,405 и 3,41.
- 2.23 a) Остаток от деления натурального числа *a* на 36 равен 31. Чему равен остаток от деления числа *a* на 12?
 - б) Остаток от деления натурального числа c на 60 равен 17. Чему равен остаток от деления числа 3c на 15?

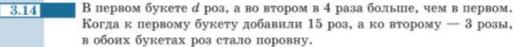
§ 3

ЧТО ТАКОЕ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Прочитайте начало п. 1 в § 3 учебника (до примера 1).

12


Перейдите от словесной модели к математической:


- 3.1
- а) Число a на 18 больше числа b;
- б) число b на 39 меньше числа c;
- в) число х в 6 раз больше числа у;
- Γ) число a в 29 раз меньше числа b.
- 3.2
- а) Сумма чисел а и в равна 43;
- б) разность чисел т и п равна 214;
- в) сумма чисел а и в на 6 меньше их произведения;
- г) разность чисел р и q на 17 больше их частного.

глава 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

/.	
3.3	Для чисел а, b, c, d:
	 а) сумма первых двух чисел равна разности четвёртого и третьего чисел;
	 б) разность первого и четвёртого чисел равна сумме второго и третьего чисел;
	в) первое число равно сумме трёх остальных;
	 г) сумма первых двух чисел равна удвоенной разности двух по- следних.
	Опишите данную ситуацию на математическом языке:
3.4	 а) Сумма чисел а и b в 7 раз больше их произведения;
0.1	б) число х при делении на число у даёт в частном 3 и в остатке 1;
	в) разность чисел c и d в 3 раза меньше их частного;
	г) число a при делении на число b даёт в частном 12 и в остатке 5 .
3.5	 а) Двузначное число N содержит а десятков и b единиц;
0.0	б) трёхзначное число М содержит а сотен, b десятков и с единиц;
	в) четырёхзначное число содержит <i>а</i> тысяч и <i>b</i> десятков;
	r) трёхзначное число содержит k сотен и m единиц.
	Составьте математическую модель данной ситуации:
3.6	Первый рабочий выполняет задание за t ч, а второй такое же задание — за v ч, при этом первый работает на 3 ч больше, чем
	второй.
3.7	Три килограмма яблок стоят столько же, сколько два килограм-
	ма груш. При этом известно, что 1 кг яблок стоит x р., а 1 кг
	груш стоит y р.
3.8	Стоимость стакана мандаринового сока а р., а стакана виноград-
0.0	ного сока $-b$ р. Известно, что 5 стаканов виноградного сока сто-
	ят столько же, сколько 6 стаканов мандаринового сока.
3.9	В первом вагоне находится x т груза, а во втором — y т. Если из
	первого вагона выгрузить $5\frac{4}{5}$ т, а во второй добавить $14\frac{1}{5}$ т, то в
	обоих вагонах груза станет поровну.
	- 1977007 1879-1871 1871 1871 1875 1875 1875 1875 1875
3.10	Первое число равно х, второе в 1,5 раза больше первого. Если к
	первому числу прибавить 3,7, а из второго числа вычесть 5,36, то

получатся одинаковые результаты.

- 3.15 Первое число равно x, а второе на 2,5 больше первого. Известно, что $\frac{1}{5}$ первого числа равна $\frac{1}{4}$ второго.
- 3.16 У Миши х марок, а у Андрея у марок. Если Миша отдаст Андрею 8 марок, то у Андрея станет марок вдвое больше, чем останется у Миши.
- 3.17 Автомобиль проехал x км по шоссе и y км по просёлочной дороге, причём по шоссе он проехал большую часть пути.
 - а) Сколько всего километров проехал автомобиль по шоссе и просёлочной дороге?
 - б) На сколько больше километров он проехал по шоссе, чем по просёлочной дороге?
 - в) Во сколько раз путь по просёлочной дороге короче пути по шоссе?
 - г) Какое время затратил автомобиль на весь путь, если он ехал со скоростью 40 км/ч; v км/ч; 60 км/ч по шоссе и 30 км/ч по просёлочной дороге?
- 3.18 Автомобиль ехал 1 ч по городу со скоростью x км/ч и 2 ч по автостраде со скоростью y км/ч.
 - а) Сколько километров автомобиль проехал по городу?
 - б) Сколько километров он проехал по автостраде?
 - в) Сколько всего километров автомобиль проехал по городу и автостраде?
 - г) На сколько больше километров он проехал по автостраде, чем по городу?

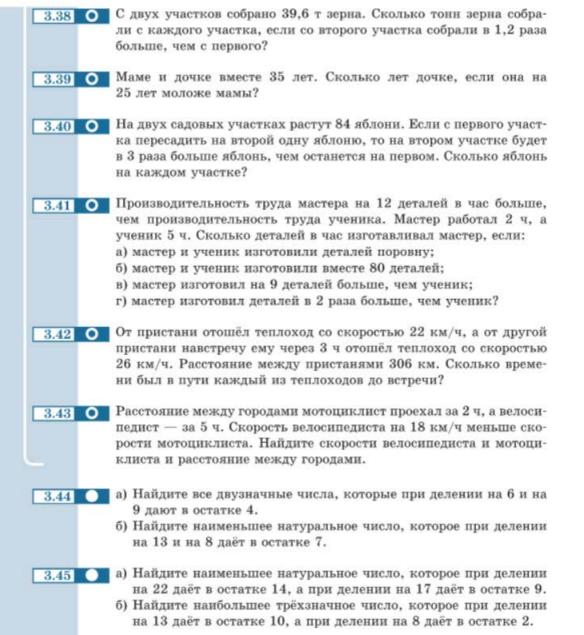
глава 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

- 3.19 Скорость пешехода v км/ч, а велосипедиста на b км/ч больше.
 - а) Чему равна скорость велосипедиста?
 - б) Какое расстояние пройдёт пешеход за 2 ч? 45 мин? 1 ч 20 мин?
 - в) Какое расстояние проедет велосипедист за t ч? m мин?
 - г) Сколько времени затратит пешеход на расстояние, пройденное велосипедистом за t ч?
- 3.20 Ира купила п м ткани на юбку, а на блузку в 1,5 раза больше.
 - а) Сколько метров ткани Ира купила на блузку?
 - б) На сколько больше метров ткани она купила на блузку, чем на юбку?
 - в) Сколько всего метров ткани купила Ира?
 - г) Сколько рублей истратила Ира на всю ткань, если цена ткани за 1 м равна х?
- 3.21 Для засахаривания смородины взяли ягоды и сахар в отношении
 - 2: 3 по массе. Принимая за х кг массу одной части, запишите:
 - а) чему равна масса ягод;
 - б) чему равна масса сахара;
 - в) сколько всего килограммов засахаренной смородины получится;
 - г) на сколько килограммов больше требуется сахара, чем смородины.
- 3.22 Из пунктов A и B одновременно навстречу друг другу выехали велосипедист со скоростью v_1 км/ч и мотоциклист со скоростью v_2 км/ч и встретились через t ч.
 - а) Чему равна скорость сближения велосипедиста и мотоциклиста?
 - δ) Чему равно расстояние от A до B?
 - в) Сколько километров до встречи проехал каждый участник движения?
 - г) На сколько километров больше проехал до встречи мотоциклист, чем велосипедист?
- 3.23 Из пункта A одновременно в противоположных направлениях выехали автомобиль со скоростью v_1 км/ч и автобус со скоростью v_2 км/ч.
 - а) Чему равна скорость удаления автомобиля от автобуса?
 - б) Какое расстояние будет между ними через t ч?
 - в) На каком расстоянии от пункта A окажется каждый участник движения?
 - г) На сколько дальше от пункта A будет автомобиль, чем автобус?

- 3.24
- Из пункта A одновременно в одном направлении выехали легковой и грузовой автомобили, скорости которых x км/ч и y км/ч соответственно.
- а) Чему равна скорость удаления легкового автомобиля от грузового?
- б) Какое расстояние будет между ними через t ч?
- 3.25
- Из пункта A выехал велосипедист. Одновременно с ним из пункта B, отстоящего от пункта A на 30 км по ходу движения велосипедиста, в том же направлении вышел пешеход со скоростью x км/ч. Известно, что велосипедист догнал пешехода через t ч.
- а) Какой путь прошёл за это время пешеход?
- б) Какой путь проехал за это время велосипедист?
- в) Чему равна скорость велосипедиста?
- г) На сколько километров велосипедист удалится от пешехода через 15 мин после обгона?
- 3.26
- Купили арбуз массой 6 кг по цене x р. за 1 кг и дыню массой 4 кг по цене y р. за 1 кг.
- а) Сколько рублей заплатили за арбуз?
- б) Сколько рублей заплатили за дыню?
- в) Сколько рублей стоила вся покупка?
- г) На сколько рублей больше заплатили за дыню, чем за арбуз?
- 3.27
- Две бригады работали на уборке урожая. Первая бригада убрала урожай с 5 га по x ц с 1 га, а вторая с 6 га, убирая с каждого гектара на 10 ц меньше.
- а) Сколько центнеров с 1 га убирала вторая бригада?
- б) Сколько всего центнеров убрала первая бригада?
- в) Сколько всего центнеров убрала вторая бригада?
- г) Сколько центнеров убрали обе бригады вместе?
- 3.28
- Расстояние между двумя пристанями теплоход проходит по течению реки за 3 ч, а против течения за 3,5 ч. Собственная скорость теплохода v км/ч, а скорость течения реки x км/ч.
- а) Чему равна скорость теплохода по течению и против течения реки?
- б) Какое расстояние теплоход проплыл по течению?
- в) Какое расстояние теплоход проплыл против течения?
- г) Сравните расстояние, пройденное теплоходом по течению реки и против течения реки. Результат сравнения запишите в виде математической модели.

Придумайте задачу по данной математической модели:

- a) x = y; 3.29
- B) 3c = 2d;
- 6) a = 2b:
- r) 6m = 11n.
- a) a + 7 = b; 3.30
- B) a b = 3;
- 6) a + 2 = b + 8; r) a 3 = b + 1.
- 3.31
- a) c = 5d + 2; B) $m = \frac{3n 4}{7};$


 - 6) 7(x+1) = y; r) 2(x-1) = 3(y+1).

Решите задачу, выделяя три этапа математического моделирования:

- В одном доме на 86 квартир больше, чем в другом. Сколько квартир 3.32 O в каждом доме, если в двух домах 792 квартиры?
- В двух залах кинотеатра 460 мест. Сколько мест в большом зале, 3.33 если в нём в 3 раза больше мест, чем в малом?
- В жилом доме всего 215 квартир. Сколько из них однокомнат-3.34 O ных, если известно, что трёхкомнатных квартир на 10 меньше, чем двухкомнатных, и на 5 больше, чем однокомнатных?
- На двух книжных полках всего 48 книг. Сколько книг на первой 3.35 полке, если известно, что их в 2 раза больше, чем на второй?
- За два дня мастер и ученик изготовили 312 деталей. Сколько де-3.36талей изготовлял каждый из них за один день, если известно, что мастер производит за день в 3 раза больше деталей, чем ученик?
 - Разберите пример 1 и комментарии к нему в § 3 учебника.

Решите задачу, выделяя три этапа математического моделирования:

3.37 На двух станках изготовлено 346 деталей, причём на первом изготовили на 10 деталей меньше, чем на втором. Сколько деталей изготовили на каждом станке?

Вкладчик положил в банк некоторую сумму денег из расчёта

9,5% годовых. Через год на счёте оказалось 43800 р. Чему равен

3.46 O

первоначальный вклад?

ГЛАВА 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

- а) Стороны прямоугольника увеличили соответственно на 10 и 3.47 15 %. На сколько процентов увеличилась площадь прямоугольника? б) Длину прямоугольника увеличили на 40 %, а ширину уменьшили на 25 %. Увеличилась или уменьшилась площадь прямоугольника? На сколько процентов? а) Два измерения прямоугольного параллелепипеда увеличили на 3.48 30 % каждое, а третье увеличили в 1,5 раза. На сколько процентов увеличился объём параллелепипеда? б) Одно измерение прямоугольного параллелепипеда увеличили на 10 %, второе — на 40 %, а третье уменьшили на 35 %. Увеличился или уменьшился объём параллелепипеда? На сколько процентов? Цену на некоторый товар сначала увеличили на 20 %, а потом 3.49 снизили на 20 %. Больше или меньше стала цена товара по сравнению с первоначальной? На сколько процентов? Рубашка дешевле брюк на 20 %, свитер дороже рубашки на 3.50 50 %. На сколько процентов свитер дороже брюк?
 - 3.51 Костюм стоил 2000 р., но в результате двух последовательных снижений его цены на одно и то же число процентов он стал стоить 1620 р. На сколько процентов снижалась цена каждый раз?
- 3.52 Магазин выставил на продажу товар с наценкой 25 % от закупочной цены. После продажи 90 % всего товара магазин снизил назначенную цену на 40 % и распродал остатки товара. Сколько процентов от закупочной цены составила прибыль магазина?
- 3.53 Цену на некоторый товар повышали дважды: сначала на р %, потом на 40 %. Поскольку часть товара после этого оказалась непроданной, устроили распродажу, уменьшив цену товара на 50 %. В итоге товар продавали по цене, на 16 % меньшей первоначальной. На сколько процентов повысили цену товара в первый раз?
- 3.54 В понедельник на биржевых торгах цена акций банка «Восход» повысилась на 10 %, во вторник понизилась на p %, в среду повысилась на 2 %. В итоге в среду акции покупали по цене, на 6,59 % превышающей итоговую цену понедельника. На сколько процентов понизилась цена акций во вторник?

- Вкладчик открыл счета в двух банках. Оказалось, что 60 % пер-3.55вого вклада равны 24 % второго вклада. На сколько процентов первый вклад меньше второго?
- Акционер распределил имеющиеся у него акции на два пакета 3.56 так, что 15 % первого пакета равны 35 % второго. Сколько процентов составляет первый пакет от общего числа акций?

84 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Решите уравнение:

a)
$$3r = 6$$
:

4.1

4.4

6)
$$\frac{1}{2}x = -5$$

a)
$$3x = 6$$
; 6) $\frac{1}{3}x = -5$; B) $-2x = 12$; r) $\frac{3}{7}x = 9$.

r)
$$\frac{3}{7}x = 9$$
.

4.2 a)
$$4x + 20 = 0$$
;

B)
$$5x - 15 = 0$$
;

6)
$$\frac{3}{2}x - 6 = 0$$
;

r)
$$\frac{2}{5}x + 4 = 0$$
.

4.3 a)
$$7x + 9 = 100$$
;

B)
$$\frac{1}{2}x - \frac{1}{3} = \frac{1}{6}$$
;

6)
$$26x - 0.8 = 7$$
:

r)
$$17.5x - 0.5 = 34.5$$
.

a)
$$9 + 13x = 35 + 26x$$
;

B)
$$0.81x - 71 = 1.11x + 1$$
;

$$6) \ \frac{7}{9}x + 3 = \frac{2}{3}x + 5;$$

r)
$$\frac{1}{3}y - 4 = \frac{1}{4}y - 5$$
.

4.5 a)
$$11x - 4x = 14$$
;

B)
$$9x + 4x = -26$$
;

6)
$$20x - 13x - 12x = 6$$
:

$$r) 11x + 7x - 24x = 42.$$

4.6 a)
$$\frac{5}{9}x - \frac{7}{4}x + \frac{17}{18}x = -\frac{1}{4}$$
;

a)
$$\frac{5}{9}x - \frac{7}{4}x + \frac{17}{18}x = -\frac{1}{4}$$
; B) $\frac{1}{9}x + \frac{7}{18}x - \frac{11}{27}x = 2\frac{1}{2}$;

6)
$$\frac{1}{6}x - 0.82 = \frac{3}{9}x - 1.37$$
; r) $0.07 - 3\frac{1}{9}x = 0.26 - x$.

r)
$$0.07 - 3\frac{1}{9}x = 0.26 - x$$

4.7 a)
$$4(x+3) = 5(x-2)$$
;

$$6) -2(x-5) + 3(x-4) = 4x + 1;$$

B)
$$3(x-1) = 2(x+2)$$
:

r)
$$3(x-5)-2(x+4)=-5x+1$$
.

- a) $\frac{x+4}{5} = 1;$ B) $\frac{x-7}{2} = -2;$
 - 6) $\frac{2x-3}{3} = -5;$ r) $\frac{3x+1}{2} = 8.$

- 4.9
- а) При каком значении переменной значение выражения 3x-2равно 10?
 - б) При каком значении переменной значение выражения 4у 1 равно 3y + 5?
- 4.10
- а) При каком значении переменной значение выражения 5k в два раза меньше, чем 4k + 12?
 - б) При каком значении переменной значение выражения р + 3 в четыре раза больше, чем 7р - 33?

Решите уравнение:

- 4.11 O a) $\frac{x-3}{6} = \frac{7}{9}$; B) $\frac{2x-3}{5} = \frac{9}{10}$;
 - 6) $\frac{x+7}{2} = \frac{2x+3}{5}$; r) $\frac{x+3}{2} = \frac{3x-2}{7}$.
- 4.12 **a** 3(8x-6) = 4(6x-4.5);
 - 6) 3(5x-7) = 5(3x+4):
 - B) $6\left(2x+\frac{1}{6}\right)=5(2,4x+0,2);$
 - r) 2(9x + 3) = 3(1 + 6x).
- 4.13
- a) 4(x-5)-(7x+9)=1:
 - 6) 2x 3(4 x) = 5 (x 1);
 - B) 8(3-2x)-(x-2)=9;
 - r) 5x 6(2x + 7) = 13 (x + 1).
- 4.14 O a) $\frac{1}{3}x + 2\left(\frac{2}{3}x \frac{1}{6}\right) = -1\frac{1}{6}$;
 - 6) 0.4(3x 0.5) = 1.5x + 0.2(x + 1);
 - B) $\frac{3}{5} \left[2x + \frac{2}{3} \right] \frac{4}{5}x = 2;$
 - Γ) 0.3(6x + 1.5) = 2.7x 0.6(x 2).
- 4.15 **a**) $\frac{2x-7}{3} = \frac{5x+4}{5}$; **b**) $\frac{3y+8}{6} = \frac{1-4y}{7}$;

 - 6) $\frac{3x+5}{15} \frac{x}{3} = \frac{2}{9}$; r) $\frac{4y}{3} \frac{5y+4}{12} = -2\frac{5}{8}$.

4.16 O a)
$$4\left(2x-\frac{1}{4}\right)-(x+1)=7\left(x+\frac{2}{7}\right)$$
;

6)
$$5(0.4y - 0.3) + 0.5(3 - 4y) = 0$$
;

B)
$$6\left(\frac{2}{3}x-1\right)+(-2x-3)=2(x-3)$$
;

r)
$$0.2(15y + 4) - 0.6(5y + 1) = 0.2$$
.

4.17 **a** a)
$$\frac{3x-4}{9} + \frac{5x-7}{6} = \frac{4x+5}{18}$$
; b) $\frac{3x-5}{7} + \frac{2x+1}{14} = \frac{2x-3}{2}$.

- а) Найдите неизвестное число, если полусумма этого числа и числа 4.18 O 12,3 больше полуразности числа 1,5 и неизвестного числа на 3.
 - б) Найдите неизвестное число, если сумма полуразности этого числа и числа 14,6 и полусуммы числа 3,8 и неизвестного числа равна 5.
- а) При каких значениях p корнем уравнения p(x + 4) (5 p) = 164.19 является число 2?
 - б) При каких значениях a корнем уравнения x(6-a) + a(x+2) = 26является число 4?
- При каком значении a уравнение $(2a 1)x = 2a^2 5a + 2$: 4.20
 - а) не имеет корней;
 - б) имеет один корень;
 - в) имеет бесконечно много корней?
- При каком значении a уравнение $(3a-1)(a+2)x = 9a^2-1$: 4.21
 - а) не имеет корней;
 - б) имеет один корень;
 - в) имеет бесконечно много корней?

Решите уравнение:

4.22 **O** a)
$$|x| = 3$$
;

B)
$$|x-1|=0$$
;

$$|5| |2x| = 8;$$

r)
$$|2x + 3| = -3$$
.

4.23 O a)
$$|3x - 2| = 4$$
; B) $|5 - 3x| = 17$; 6) $10 - |2x + 5| = 8$; F) $1 + |1 - 4x| = 9$.

B)
$$|5 - 3x| = 17$$
;

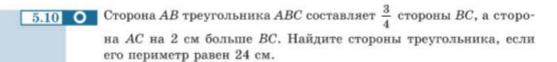
6)
$$10 - |2x + 5| = 8$$

4.24 a)
$$x + |x| = 6;$$
 b) $x + |x| + 4 = 0;$ c) $|x| - 8 = x.$

B)
$$x + |x| + 4 = 0$$
;

6)
$$x - |x| = 5$$
;

r)
$$|x| - 8 = x$$


4.25 a)
$$3x + |2x + 1| = 1$$
; 6) $|5 - 2x| - 2x = x + 3$.

6)
$$|5-2x|-2x=x+3$$

§ 5

ЗАДАЧИ НА СОСТАВЛЕНИЕ ЛИНЕЙНЫХ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ

- 5.1 Первое число в 2,5 раза больше второго. Если к первому числу прибавить 1,5, а ко второму 8,4, то получатся одинаковые результаты. Найдите эти числа.
- 5.2 Сумма трёх чисел равна 496. Второе число составляет $\frac{8}{15}$ от первого, а первое число меньше третьего в $2\frac{3}{5}$ раза. Найдите каждое из чисел.
- 5.3 Отношение двух чисел равно 5 : 3. Если к первому числу прибавить 1, а второе число вычесть из 25, то получатся равные результаты. Найдите эти числа.
- 5.4 Отношение трёх чисел равно 5 : 4 : 3, а их сумма равна 84. Найдите эти числа.
- 5.5 О Найдите три последовательных нечётных числа, сумма которых равна 81.
- 5.6 О Задумали некоторое число. После того как к нему прибавили 4, сумму разделили на 5 и к частному прибавили 200, получилось число, на 16 меньше задуманного. Какое число было задумано?
- 5.7 О Задумали некоторое число; 75 % этого числа разделили на 15 и к частному прибавили 40. Получилось число, равное 9 % задуманного. Какое число было задумано?
- 5.8 Одна сторона треугольника в 2 раза меньше другой стороны и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 31 см.
- 5.9 В треугольнике один угол в 3 раза меньше другого угла и на 20° больше третьего. Найдите углы треугольника.

5.11 О Найдите углы треугольника, если их отношение равно 2 : 3 : 4.

Рассмотрите пример 1 в § 5 учебника.

- 5.12 О Периметр треугольника ABC равен 44 см. Сторона AB вдвое меньше стороны BC и на 4 см меньше стороны AC. Найдите длины всех сторон треугольника.
- 5.13 О На трёх полках находится 75 книг. На первой полке в два раза больше книг, чем на второй, а на третьей на 5 книг меньше, чем на первой. Сколько книг на каждой полке?
- 5.14 О В трёх цехах работают 310 человек. В первом цехе рабочих в 1,5 раза больше, чем во втором, и на 110 человек меньше, чем в третьем. Сколько рабочих в каждом цехе?
- 5.15 О Цена персиков на 20 р. выше, чем цена абрикосов. Для консервирования компота купили 3 кг персиков и 5 кг абрикосов. По какой цене покупали фрукты, если вся покупка обощлась в 620 р.?
- 5.16 О Две бригады были заняты на уборке картофеля. Первая бригада за 5 ч работы убрала картофеля столько же, сколько вторая бригада за 7 ч. Сколько центнеров картофеля убрала первая бригада, если за 1 ч она убирала на 16 ц больше, чем вторая бригада?
- 5.17 О В одной корзине в 3 раза больше огурцов, чем в другой. Если из неё взять 15 штук огурцов, а в другую корзину добавить 25 штук, то в обеих корзинах огурцов станет поровну. Сколько огурцов было первоначально в каждой корзине?
- 5.18 О Туристы отправились в трёхдневный поход. В первый день они прошли $\frac{7}{22}$ всего пути, во второй $-\frac{1}{3}$ оставшегося пути, а в третий последние 25 км. Найдите длину туристского маршрута.

24

Рассмотрите примеры 4-6 в § 5 учебника.

- 5.19 О Из пунктов А и В, расстояние между которыми 350 км, одновременно навстречу другу выехали два автомобиля и встретились через 2 ч 20 мин. С какой скоростью двигался каждый автомобиль, если скорость одного из них на 30 км/ч больше скорости другого?
- 5.20 О Из пункта А выехал автобус. Через полчаса вслед за ним из пункта В, отстоящего от пункта А на 6 км, выехал автомобиль и через 45 мин догнал автобус. На каком расстоянии от пункта А автомобиль догнал автобус, если его скорость на 40 км/ч больше скорости автобуса? (Рассмотрите два случая.)
- Белосипедист ехал от посёлка до станции сначала 30 мин по грунтовой дороге, а затем 40 мин по шоссе. С какой скоростью ехал велосипедист по шоссе, если она на 4 км/ч больше, чем скорость велосипедиста по грунтовой дороге, а расстояние от посёлка до станции равно 12 км?
- 5.22 О Из пункта А в пункт В со скоростью 60 км/ч выехал мотоциклист. Через 30 мин навстречу ему из В выехал другой мотоциклист, скорость которого составляла 50 км/ч. Какое время ехал второй мотоциклист до встречи с первым, если расстояние между А и В равно 162 км?
- 5.23 Из пункта М в пункт N выехал автобус. Через полчаса из N в М со скоростью, превышающей скорость автобуса на 18 км/ч, выехал легковой автомобиль. Через 1 ч 20 мин после начала движения автомобиля он встретил автобус, причём проехал расстояние на 3 км больше, чем автобус. Чему равно расстояние между М и N?
- 5.24 О Из двух пунктов, расстояние между которыми 340 км, одновременно навстречу друг другу выехали два поезда. Через 2 ч после начала движения им осталось пройти до встречи 30 км. Найдите скорости поездов, если известно, что скорость одного из них на 5 км/ч больше скорости другого.

Рассмотрите пример 3 в § 5 учебника.

23

- 5.25 О Катер за 2 ч по озеру и за 3 ч против течения реки проплывает такое же расстояние, что и за 3 ч 24 мин по течению реки. Найдите собственную скорость катера, если скорость течения реки равна 3 км/ч.
- 5.26 О Катер шёл по течению реки 5 ч, а затем против течения 3 ч. Найдите собственную скорость катера, если известно, что скорость течения реки 3 км/ч, а всего пройдено 126 км.
- 5.27 От пристани А отошёл плот. Одновременно с ним от пристани В вверх по течению реки по направлению к А отошла моторная лодка. Найдите собственную скорость лодки, если лодка и плот встретились через 2 ч, а расстояние между пристанями А и В равно 16 км.
- 5.28 От пристани А вниз по течению реки отошла лодка, собственная скорость которой 12 км/ч, а через 1 ч из А вверх по течению отправился катер, собственная скорость которого 18 км/ч. Найдите скорость течения реки, если через 3 ч после выхода лодки расстояние между лодкой и катером составляло 75 км.
- 5.29 О Цена 1 м³ бруса на 400 р. меньше, чем цена 1 м³ половой доски. Для строительства купили 4 м³ бруса и 5 м³ половой доски. Сколько стоит 1 м³ пиломатериалов каждого вида, если за половую доску заплатили на 7000 р. больше, чем за брус?
- 5.30 Новая копировальная машина за 1 мин копирует на 10 листов больше, чем старая машина. За 4 мин работы на ней сделали на 16 листов копий больше, чем на старой машине за 7 мин. Сколько листов копирует новая машина за 1 мин?
- 5.31 О В магазин привезли яблоки и бананы. Когда продали половину всех яблок и ²/₃ всех бананов, то яблок осталось на 70 кг больше, чем бананов. Сколько килограммов фруктов каждого вида привезли в магазин, если масса привезённых яблок превосходила массу бананов в 3 раза?

глава 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

5.32 О Кирпичный завод обеспечивает кирпичом три стройки. В начале рабочего дня на первую стройку отправили $\frac{1}{5}$ всего количества кирпича со склада, а на вторую $-\frac{1}{3}$ остатка. После обеда на третью стройку отправили 120 поддонов кирпича, что составляло $\frac{3}{4}$ остатка кирпича на складе завода. Сколько поддонов кирпича было на складе завода в начале рабочего дня?

27

Рассмотрите пример 7 в § 5 учебника.

- 5.33 О Цифра единиц задуманного двузначного числа на 2 больше цифры десятков. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 9. Какое число было задумано?
- 5.34 Четырёхзначное нечётное число кратно 5. Если его последнюю цифру перенести на первое место, не меняя порядок остальных цифр, то получится число, которое на 216 меньше удвоенного исходного числа. Найдите исходное четырёхзначное число.
- 5.35 Пятизначное число кратно 10 и начинается с цифры 1. Если эту цифру перенести на место десятков, не меняя порядка остальных цифр, разделить новое число на 2 и от частного отнять 165, то получится исходное число, которое и требуется найти.
- 5.36 В первый день в магазине было продано 30 % всего картофеля. Во второй день 40 % оставшегося картофеля, а в третий день последние 84 кг. Сколько килограммов картофеля было в магазине первоначально?
- 5.37 Трое изобретателей получили за своё изобретение премию в размере 141 000 р., причём второй получил $33\frac{1}{3}$ % того, что получил первый, и ещё 6000 р., а третий получил $33\frac{1}{3}$ % того, что получил второй, и ещё 3000 р. Какую премию получил каждый?
- 5.38 Торговая база закупила партию альбомов и поставила её магазину по оптовой цене, которая на 30 % выше закупочной. Магазин установил розничную цену на альбом на 20 % выше оптовой

цены. При распродаже в конце сезона магазин снизил розничную цену на альбом на 10 %. В итоге цена альбома стала равной 70 р. 20 к. На сколько последняя цена больше закупочной?

- 5.39 О Сплав массой 2 кг состоит из серебра и меди, причём масса серебра составляет $14\frac{2}{7}$ % массы меди. Сколько серебра в сплаве?
- 5.40 Имеется 735 г 16%-ного раствора йода в спирте. Нужно получить 10%-ный раствор. Сколько спирта нужно для этого добавить к имеющемуся раствору?
- 5.41 Из 38 т сырья второго сорта, содержащего 25 % примесей, после переработки получается 30 т сырья первого сорта. Каков процент примесей в сырье первого сорта?
- 5.42 О Свежие грибы содержат 90 % воды, а сушёные 12 %. Сколько получится сушёных грибов из 88 кг свежих?
- 5.43 О Пчёлы, перерабатывая цветочный нектар в мёд, освобождают нектар от значительной части воды. Сколько нектара приходится перерабатывать пчёлам для получения 1 кг мёда, если известно, что нектар содержит 70 % воды, а полученный из него мёд 17 % воды?
- 5.44 Акционер решил продать имеющийся у него пакет акций. Он разделил его на две части. Прибыль от продажи первой части составила 25 %, а от продажи второй — 10 %. В результате прибыль от продажи всего пакета составила 19 %. В каком отношении разделил акционер свой пакет на две части для продажи?

Решите старинные задачи (№ 5.45-5.48).

- Говорят, что на вопрос о том, сколько у него учеников, древнегреческий математик Пифагор ответил так: «Половина моих учеников изучает математику, четверть изучает природу, седьмая часть проводит время в молчаливом размышлении, остальную часть составляют три девы». Сколько учеников было у Пифагора?
- 5.46 По контракту рабочим причитается по 48 франков за каждый отработанный день, а за каждый неотработанный день с них взыскивается по 12 франков. Через 30 дней работы выяснилось, что работникам ничего не причитается. Сколько дней они отработали на самом деле за это время?

5.48

Спросил некто у учителя: «Скажи, сколько у тебя в классе учеников, так как я хочу отдать тебе в ученье своего сына». Учитель ответил: «Если придёт ещё столько же, сколько имею, и полстолько, и четвёртая часть, и твой сын, то будет у меня 100 учеников». Спрашивается, сколько было у учителя учеников?

Идёт по морю корабль, на нём 120 человек — мужчин и женщин. Всего они заплатили 120 гривен, причём мужчина платил 4 алтына, а женщина — 3 алтына. Сколько было на корабле мужчин и женщин, если 1 гривна составляет 10 копеек, а 1 алтын — 3 копейки?

§ 6 КООРДИНАТНАЯ ПРЯМАЯ

31 Прочитайте п. 1 в § 6 учебника.

а) Изобразите на координатной прямой точки:

A(5), B(-3), C(-8), D(-1,5); M(6), N(-1), P(2,5), O(0);

Q(-3,5), R(-5), S(2), Z(4,5);

E(-7), F(9), K(3,5), L(-0,5).

б) Найдите расстояние между точками:

PиB, DиP, AиQ, BиN;

DиA, BиC, NиQ, MиD;

Ми N, RиQ, АиС, РиQ;

МиQ, NиP, АиP, ВиD.

- 6.2 На координатной прямой даны точки A(-3), B(5); M середина отрезка AB. Найдите:
 - а) расстояние между точками А и В;
 - б) расстояние между точками А и М;
 - в) расстояние между точками B и M;
 - Γ) координату точки M.
- 6.3 «Число с больше числа d». Переведите это утверждение:
 - а) на алгебраический язык (с помощью знака неравенства);
 - б) на геометрический язык (с помощью координатной прямой).

- «Число х меньше числа у». Переведите это утверждение: 6.4
 - а) на алгебраический язык (с помощью знака неравенства);
 - б) на геометрический язык (с помощью координатной прямой).
- «Число а больше числа b, но меньше числа c». Переведите это 6.5 утверждение:
 - а) на алгебраический язык (с помощью знаков неравенств);
 - б) на геометрический язык (с помощью координатной прямой).

Изобразите графическую модель ситуации:

- а) На координатной прямой точка а расположена левее точки b; 6.6
 - б) на координатной прямой точка a расположена правее точки b.

Запишите на математическом языке, чему равно расстояние между точками а и b.

- 6.7 а) На координатной прямой дана точка A(a) и точки B(a + 3), C(a-1), D(a+n);
 - б) на координатной прямой даны точка В(b) и точка X, удалённая от точки B на расстояние, равное 5;
 - в) расстояние от точки O(0) до точки T равно m единичных отрез-
 - r) расстояние от точки A(a) до точки B равно r единичных отрез-KOB.
- Изобразите на координатной прямой графическую модель ситуа-6.8 ции по её аналитической модели:
 - a) |x| = 3:
 - |x| = 1.5;
 - B) |x| = 0;
 - г) |x| = b, где b > 0.

Прочитайте п. 2 в § 6 учебника.

Изобразите на координатной прямой числовой промежуток, назовите его, запишите аналитическую модель:

- a) $(3; +\infty)$; 6.9
- 6) $(-\infty; -5)$; B) $(-2; +\infty)$; r) $(-\infty; 0)$.

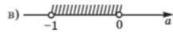
- 6.10
- a) $[1; +\infty);$
- 6) $(-\infty; 4];$ B) $(-\infty; -2];$ r) $[-1; +\infty).$

- 6.11
- a) (3; 5); 6) [-5; 1]; B) [4; 6]; r) (0; 1).

- 6.12

- a) [6; 8); 6) (-2; 4]; B) [-3; -1); r) (5; 7].

Дана геометрическая модель числового промежутка. Назовите этот числовой промежуток, обозначьте его, запишите аналитическую модель:



По названию числового промежутка запишите его обозначение, постройте геометрическую и аналитическую модели:

- 6.17
- а) Открытый луч с началом в точке 5;
- б) луч с началом в точке -2;
- в) интервал с началом в точке 1 и концом в точке 3;
- г) полуинтервал с началом в точке 6 и концом в точке 10.
- 6.18
- а) Отрезок с началом в точке -2 и концом в точке 0;
- б) открытый луч с концом в точке 7;
- в) полуинтервал с началом в точке 4 и концом в точке 9 (точка 9 не входит в полуинтервал);
- г) луч с концом в точке 12.

По данной аналитической модели назовите соответствующий числовой промежуток, запишите его обозначение, постройте геометрическую модель:

a)
$$x > 3$$
; b) $x \ge 3$; b) $x < 3$; c) $x \le 3$.

B)
$$x < 3$$
;

r)
$$x \leq 3$$

6.20 a)
$$2 < x < 4$$
; b) $3 \le x < 5$; b) $0 \le x \le 7$; r) $5 < x \le 8$.

6)
$$3 \le x < 5$$
:

B)
$$0 \le x \le 7$$
:

r)
$$5 < x \le 8$$

6.21 a)
$$x \ge 2$$

a)
$$x \ge 2$$
; b) $-5 < x < -2$; b) $x < 0$; c) $4 \le x < 8$.

B)
$$x < 0$$
:

r)
$$4 \le x < 8$$

a)
$$1 \le x \le 3$$
;

B)
$$x \leq 1$$

6)
$$6 < x \le 7$$
;

a)
$$1 \le x \le 3$$
; B) $x \le 1$;
6) $6 < x \le 7$; P) $-6 < x < -2$.

Принадлежит ли промежутку (-8; 4) число:

6.24

Принадлежит ли промежутку (2; 6] число:

6.25

Принадлежит ли промежутку [3; 7) число:

- a) 3;
- 6) 5;
- B) 7;
- r) 6.5?

6.26

Принадлежит ли промежутку (3; $+\infty$) число:

- a) 6;
- 6) 125;
- в) 10365;
- r) 3?

6.27

Принадлежит ли промежутку ($-\infty$; 12) число:

- a) -8;
- 6) -250;
- B) 0:
- r) 12?

6.28

Принадлежит ли промежутку [8; 12] число:

- a) 15:
- 6) $8\frac{1}{3}$; B) $12\frac{3}{7}$; r) 25?

6.29

Какие из чисел 4, 3,5, -1, 0, -10, -9, 1, 3, -12 принадлежат промежутку:

- a) [3; 5];
- б) (-8; 0); B) (-12; -9); Γ) (1; + ∞)?

6.30

Какие из чисел 0, 5, 7, -8, -2, 9, 12 принадлежат промежутку:

- a) [4; 7);
- 6) $(5; +\infty)$; B) $[-8; +\infty)$; r) (5; 9]?

6.31

Придумайте три положительных и три отрицательных нецелых числа, принадлежащих промежутку:

- a) (-6; 8);
- б) [-10; 15];
- в) [-3; 6]; г) (-10; 4).

6.32 Существует ли целое число, которое принадлежит промежутку:

- a) (0: 1):
- б) [3,5; 4);
- в) [2; 3);
- r) (7.5; 81?

Сколько целых чисел принадлежит промежутку: 6.33

- a) [5; 7];
- б) (-3; -1):
 - B) (0; 6];
- r) [-7; 2)?

Сколько натуральных чисел принадлежит промежутку: 6.34

- a) [-2; 1];
- $6) \left(0; \frac{1}{3}\right);$
- в) (0; 1); г) [-5; 4]?

Укажите наибольшее целое число, принадлежащее промежутку: 6.35

- a) [-15; -11];
- б) [5; 7);
- в) [5: 7];
- r) (-∞: 8.21.

6.36 Укажите наименьшее целое число, принадлежащее промежутку:

- a) [5; 7);
- б) $(0; +\infty);$ в) (9,3; 12);
- r) $[5,1; +\infty)$.

Принадлежит ли промежутку (-∞; 5) число 4,98? Укажите два 6.37 числа, которые больше 4,98 и принадлежат этому промежутку.

а) Изобразите множество точек координатной прямой, расстояние 6.38 до которых от точки O(0) меньше трёх единичных отрезков.

б) Изобразите множество точек координатной прямой, расстояние до которых от точки A(a) больше двух единичных отрезков.

 в) Изобразите множество точек координатной прямой, расстояние до которых от точки O(0) больше трёх единичных отрезков.

г) Изобразите множество точек координатной прямой, расстояние до которых от точки A(a) меньше двух единичных отрезков.

Интервал (a-r; a+r), где r — положительное число, называют окрестностью точки а, а число r — радиусом окрестности.

6.39 Укажите окрестность точки a радиусом r, если:

- a) a = 0, r = 3;
- B) a = 4, r = 4;
- 6) a = 1, r = 4;
- r) a = -3, r = 5.

Для данного интервала укажите, окрестностью какой точки он является и чему равен радиус окрестности.

6.40 **a**) (3; 7); b) (-4; 4); b) (2; 10); r) (-7; -1).

6.41 O a) (2; 5); 6) (1,98; 2,02); B) (-11; -2); r)
$$\left(\frac{13}{7}; \frac{15}{7}\right)$$
.

- 6.42 Обоснуйте с помощью координатной прямой утверждение: если a > b, то -a < -b. Рассмотрите следующие случаи:
 - а) а и b положительные числа;
 - б) a и b отрицательные числа;
 - в) a положительное число, b отрицательное число;
 - a = 0, b отрицательное число.
- 6.43 О С помощью координатной прямой решите уравнение:

 - a) |x| = 3; B) |x + 1,3| = 1,7; 6) |x 1| = 2,5; P) |2x + 8| = 8.
- С помощью координатной прямой решите неравенство: 6.44

- a) |x| < 3; b) |x + 1,3| > 1,7; c) $|x 1| \ge 2,5$; r) $|2x + 8| \le 8$.
- На координатной прямой даны точки $A\left(\frac{4}{99}\right)$, $B\left(\frac{4}{101}\right)$, $C\left(\frac{1}{25}\right)$ и D— 6.45 середина отрезка ВА. Укажите порядок расположения этих точек на координатной прямой (в соответствии с принятым на ней направлением).
- Пусть a количество натуральных чисел в отрезке [0; 60], а c 6.46 количество целых чисел в полуинтервале [-4; 7,5). Найдите процентное отношение c:a.
- Какова вероятность того, что случайным образом выбранное на-6.47 туральное число из интервала (5,9; 47,1):
 - а) делится на 3:
 - б) является простым числом;
 - в) при делении на 8 даёт в остатке 1;
 - г) при возведении в квадрат даёт трёхзначное число?
- Какова вероятность того, что случайным образом выбранное це-6.48 лое число из отрезка [0; 99]:
 - а) делится на 11:
 - б) при делении на 13 даёт в остатке 10;
 - в) при возведении в квадрат даёт трёхзначное число;
 - г) при возведении в квадрат даёт четырёхзначное число?

- 6.49 Пусть A и B промежутки на координатной прямой. Их объединением называют множество всех таких точек, каждая из которых принадлежит хотя бы одному из данных промежутков. Обозначают объединение так: $A \cup B$ (например, если A = [0; 2], B = [1; 3], то $A \cup B = [0; 3]$). Найдите $A \cup B$, если:
 - a) A = (0; 1), B = [1; 3);
 - б) A = [-2,5; 3], B = [0; 1];
 - B) $A = (-\infty; 0), B = [-1; +\infty);$
 - r) $A = (2; 3), B = [0; +\infty).$
- 6.50 Пусть A и B промежутки на координатной прямой. Их *пересечением* называют множество всех таких точек, каждая из которых принадлежит обоим промежуткам. Обозначают пересечение так: $A \cap B$ (например, если A = [0; 2], B = [1; 3], то $A \cap B = [1; 2]$). Найдите $A \cap B$, если:
 - a) A = (0; 2), B = [1; 5);
 - 6) A = [-2,5; 3], B = [0; 1];
 - B) $A = (-\infty; 0), B = [-1; +\infty);$
 - r) $A = (2; 3), B = [0; +\infty).$

СТАТИСТИКА И КОМБИНАТОРИКА. ДАННЫЕ И РЯДЫ ДАННЫХ

Найдите количество двузначных натуральных чисел, содержащихся в каждом из промежутков: [11; 17], [0; 12], ($-\infty$; 16], [0; 10), ($-\infty$; 14), (92; $+\infty$), [12; 19), (0; 13], (13; 20], ($-\infty$; 26]. Все найденные результаты выпишите в строчку через запятую.

- 7.1 О а) Какой ряд данных получился?
 - б) Укажите наибольшее число в ряде данных.
 - в) Чему равен размах ряда?
 - г) Найдите объём ряда данных.
- 7.2 (а) Заполните таблицу:

Различные результаты (в порядке возрастания)			
Сколько раз встретился результат			

- б) Какова процентная доля результата, равного 0?
- в) Найдите моду ряда данных и её процентную долю.
- г) Постройте круговую (процентную) диаграмму, соответствующую таблице.

Вспомните правило умножения и рассмотрите решение примера 2 из § 7 в главе 1 учебника.

- 7.3 У прадедушки два сына и дочь. У каждого из сыновей прадедушки — сын и дочь, а у его дочки — два сына. У каждой внучки прадедушки — два сына, а у каждого внука — две дочки.
 - а) Нарисуйте генеалогическое дерево этой семьи.
 - б) Сколько у прадедушки всего внуков и внучек?
 - в) Сколько у прадедушки всего правнуков и правнучек?
 - г) Сколько у него всего потомков?
- 7.4 О Для вариантов № 1 и 2 контрольной работы учителю надо выбрать по одному из следующих уравнений (в разных вариантах уравнения должны быть различными):

$$x + (x - 5) = 15;$$
 $8x - x = 21;$ $2 - 7(x + 2) = 6(x - 2);$ $5(x + 2) - 6(x - 2) = 5.$ $3(2 - x) - 1 = 5 - 7x;$

- а) Сколько всего способов такого выбора существует?
- б) Сколько всего способов такого выбора существует, если в обоих вариантах корень уравнения должен быть отличен от 0?
- в) Сколько всего способов такого выбора существует, если хотя бы в одном из вариантов корень уравнения должен быть отличен от 0?
- Сколько всего существует способов выбора различных уравнений для составления трёх вариантов контрольной работы?

ЛИНЕЙНАЯ ФУНКЦИЯ

§ 8

координатная плоскость

42

Прочитайте п. 1 в § 8 учебника.

- 8.1
- Не производя построения, ответьте на вопрос, в каком координатном угле расположена точка:
- a) M(2; 4), N(-3; 6), P(12; -4), Q(-3; -0.5);
- 6) X(-14; -5), Y(-7; 38), K(1; 0), L(0; -4);
- B) A(-23; 6), B(13; 16), C(19; -25), $D(2; -\frac{1}{2})$;
- r) $R\left(\frac{5}{8}; -\frac{1}{7}\right)$, $S\left(-\frac{4}{11}; -\frac{1}{12}\right)$, $E\left(-\frac{17}{21}; \frac{41}{43}\right)$, $F\left(\frac{15}{31}; \frac{1}{16}\right)$.
- 8.2
- Замените символ * каким-либо числом так, чтобы:
- а) точка A(5;*) принадлежала первому координатному углу;
- б) точка В(*; 3) принадлежала второму координатному углу;
- в) точка C(*; -7) принадлежала третьему координатному углу;
- г) точка D(12; *) принадлежала четвёртому координатному углу.

Не производя построения, ответьте на вопрос, в каком координатном угле координатной плоскости xOy расположена точка:

- 8.3
- а) A(a; 10), если a > 0;
- в) C(-c; 5), если c > 0;
- б) B(17; b), если b < 0;
- г) D(-8; d), если d < 0.

- 8.4
- а) P(x; y), если x > 0, y > 0; в) R(x; y), если x < 0, y > 0;
- б) Q(x; y), если x > 0, y < 0; r) S(x; y), если x < 0, y < 0.
- 8.5

В каком координатном угле координатной плоскости расположена данная точка:

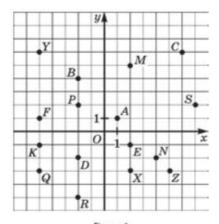
- а) M(a; b), если a < 0, b < 0;
- б) N(-a; -b), если a > 0, b < 0;
- в) K(a; -b), если a < 0, b > 0;
- Γ) L(-a; b), если a > 0, b > 0?
- 8.6

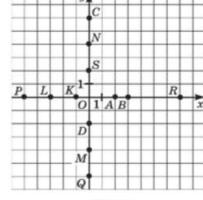
Найдите координаты точек, изображённых на рис. 1:

- a) A, C, M, S; B) P, Y, B, F;
- 6) R, D, K, Q; r) E, N, X, Z.

Какой признак объединяет каждую группу точек?

8.7


Найдите координаты точек, изображённых на рис. 2:


- a) A, B, K, P, L, R;
- б) C. D. M. N. Q. S.

Какой общий графический признак объединяет эти точки?

Как этот общий признак выражается при записи координат точек?

- в) Где расположены все точки, у которых абсцисса равна нулю; ордината равна нулю?
- г) Составьте аналитическую модель множества точек, лежащих на оси х, на оси у.

Puc. 1

Puc. 2

Найдите координаты точек, изображённых на рис. 3. 8.8

Что общего в записи координат каждой группы точек?

Как расположены на координатной плоскости все точки, имеющие одинаковую абсциссу?

Составьте аналитическую модель прямой, параллельной оси у.

Найдите координаты точек, изображённых на рис. 4. 8.9

Что общего в записи координат каждой группы точек?

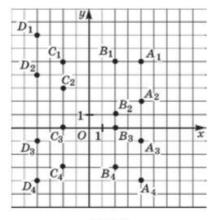
Как расположены на координатной плоскости все точки, имеющие одинаковую ординату?

Составьте аналитическую модель прямой, параллельной оси х.

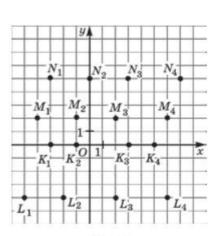
Прочитайте п. 2 в § 8 учебника.

Постройте прямую, удовлетворяющую уравнению:

- a) x = 3; 8.10
- б) y = 3; в) y = 1; г) x = 8.


- 8.11

- 8.12
- a) x = 0.5; 6) y = -1.5; B) y = 3.5; F) x = -6.5.


8.13

Какая прямая удовлетворяет уравнению:

- a) x = 0;
- б) y = 0?

Puc. 3

Puc. 4

Как расположены на координатной плоскости все точки, имеющие 8.14 абсциссу, равную:

- a) 5;
- 6) -7:
- B) 9:
- r) -1?

Как расположены на координатной плоскости все точки, имеющие 8.15 ординату, равную:

- a) -3;
- 6) 8;
- B) -12;
- r) 4?

На координатной плоскости хОу постройте прямую, удовлетворяющую уравнению:

- 8.16
- a) 2x = 4; b) -x + 4 = 0; b) -3x = 9; r) 2x 6 = 0.

- 8.17
- a) y + 3 = 0; b) -6y = 12; b) 5 y = 0; r) 7y = 0.

На координатной плоскости хОу найдите точку, симметричную 8.18 данной точке относительно начала координат:

- a) A(5; 7);
- б) B(0; 8);
- B) C(7; -1); r) D(-3; 0).

На координатной плоскости xOy найдите точку, симметричную 8.19 данной точке относительно оси и:

- a) M(-2; 8);
- 6) L(-5; 0);
- B) S(-9; -3); r) R(0; -4).

На координатной плоскости хОу найдите точку, симметричную 8.20 данной точке относительно оси х:

- a) E(6; 0);

- б) P(-2; 1); B) F(0; -4); r) Q(3; -5).

Постройте прямую, проходящую через точки: 8.21

- a) A(2; 7), B(3; 4);
- B) M(0; -2), N(8; 0);
- 6) C(-1; 5), D(6; -4); r) P(-3; -4), Q(-7; -1).

Постройте отрезок, зная координаты его концов: 8.22

- a) L(-4; 3), K(0,5; 2);
- B) R(5; 3,5), S(2; 3);
- 6) E(2; 7), M(-1; 6); r) X(7; 1), Y(-4; -6).

Рассмотрите пример 2 в § 8 учебника.

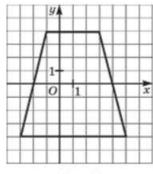
8.23 О Постройте геометрическую фигуру по координатам её вершин:

- a) A(-4; 3), B(2; -1), C(-1; -1);
- 6) K(-2; 3), L(3; 3), M(3; -2), N(-2; -2);
- B) K(3; -4), B(-2; 0), C(0; 5);
- r) F(0; 4), E(5; 0), G(0; -4), H(-5; 0).

Постройте отрезок, симметричный отрезку ВК относительно оси 8.24 х. если:

- a) B(-6; 2), K(-1; 1);
- B) B(-4; 0), K(1; -4);
- б) B(5; 1), K(2; -3);
- r) B(0; 6), K(6; -2),

8.25 О Постройте отрезок, симметричный отрезку DM относительно оси и, если:


- a) D(4; 2), M(1; 6);
- B) D(-5; -3), M(1; -2);
- 6) D(-3; 0), M(0; -3); r) D(-4; 4), M(2; -2).

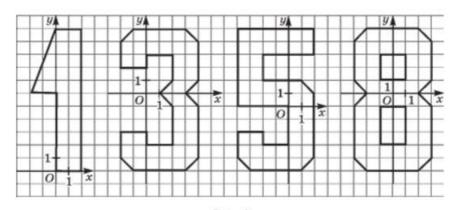
8.26 O Постройте отрезок, симметричный отрезку СН относительно начала координат, если:

- a) C(-7; -2), H(-2; -7); B) C(2; 3), H(-3; -2);
- 6) C(5; 0), H(2; -4);
- r) C(0; -3), H(-3; 1).

Воспользовавшись рис. 5, найдите: 8.27

- а) координаты вершин изображённого четырёхугольника;
- б) координаты точек, в которых стороны четырёхугольника пересекают оси координат;
- в) координаты вершин четырёхугольника, расположенного выше нарисованного на 4 единицы;
- г) координаты вершин четырёхугольника, расположенного левее нарисованного на 3 единицы.

Puc. 5


Постройте прямую, симметричную прямой AB: 8.28

- а) относительно оси x, если A(4; 1), B(-1; -4);
- б) относительно оси y, если A(0; 3), B(-3; 0);
- в) относительно оси x, если A(-2; 0), B(0; 6);
- г) относительно оси y, если A(-6; -3), B(4; 2).

а) Найдите координаты точек, в которых прямая MN, где M(2; 4)8.29 и N(5; -2), пересекает координатные оси.

- б) Найдите координаты точек, в которых прямая FE, где F(3; 4)и E(-6; -5), пересекает координатные оси.
- 8.30 **(a)** Даны точки A(-1; 4) и B(-1; 8). Найдите прямую, которая является осью симметрии для этих двух точек. Отметьте точку С(-2; 5) и найдите точку, симметричную ей относительно найденной прямой.

- б) Даны точки K(1; 5) и L(-3; 5). Найдите прямую, которая является осью симметрии для этих двух точек. Отметьте точку F(3; 7) и найдите точку, симметричную ей относительно найденной прямой.
- 8.31 (a) Даны точки C(2; 4) и D(1; 5). Постройте прямую, симметричную прямой CD относительно оси абсцисс.
 - б) Даны точки E(-1; 4) и F(2; -2). Постройте прямую, симметричную прямой EF относительно оси ординат.
- 8.32 Постройте:
 - а) $\triangle ABC$, если A(6; 0), B(2; -3), C(3; 2);
 - б) $\Delta A_1B_1C_1$, симметричный ΔABC относительно оси x;
 - в) $\Delta A_{2}B_{2}C_{3}$, симметричный ΔABC относительно оси y;
 - г) $\Delta A_3 B_3 C_3$, симметричный ΔABC относительно начала координат.
- Даны три вершины A(1; 1), B(1; 3), C(3; 3) квадрата ABCD. Найди-8.33 O те координаты точки D, постройте этот квадрат и ещё три квадрата, один из которых расположен ниже данного на пять единиц, второй — на две единицы правее данного, третий — на три единицы ниже и пять единиц левее данного. Назовите координаты вершин третьего квадрата $A_3B_3C_3D_3$.
- Запишите координаты точек, с помощью которых можно постро-8.34 ить цифры, изображённые на рис. 6:
 - а) цифра 1;
- б) цифра 3;в) цифра 5;
- г) цифра 8.

- 8.35 О Найдите координаты вершин C и D квадрата ABCD, если известны координаты вершин A(3; 1) и B(3; -4). Сколько решений имеет задача?
- 8.36 О Известны координаты двух противоположных вершин квадрата ABCD: A(2; -2) и C(-2; 2). Найдите координаты двух других вершин. Сколько решений имеет задача?
- 8.37 О Длина стороны квадрата ABCD равна 6, а координаты вершины А равны (-2; 3). Найдите координаты остальных вершин, зная, что сторона AB квадрата параллельна оси ординат и что начало координат лежит внутри квадрата.
- 8.38 О Квадрат со стороной 8 расположен так, что центр его находится в начале координат, а стороны параллельны осям координат. Определите координаты вершин квадрата.

На координатной плоскости постройте точки по заданным координатам и последовательно соедините их отрезками. Какая фигура при этом получится?

- 8.39 a) 1(-1; 5), 2(-3; 5), 3(-3; 9), 4(-2; 10), 5(3; 10), 6(3; 4), 7(0; 1), 8(3; 1), 9(3; -1), 10(-3; -1), 11(-3; 1), 12(1; 5), 13(1; 8), 14(-1; 8);
 - 6) 1(0; 7), 2(-1; 0), 3(0; 0), 4(0; 2), 5(2; 2), 6(2; 0), 7(3; 0), 8(3; -2), 9(2; -2), 10(2; -4), 11(0; -4), 12(0; -2), 13(-3; -2), 14(-3; 0), 15(-2; 7).
- 8.40 a) 1(4; 2), 2(4; 4), 3(3; 5), 4(-1; 5), 5(-2; 4), 6(-2; -5), 7(-1; -6), 8(3; -6), 9(4; -5), 10(4; -1), 11(3; 0), 12(0; 0), 13(0; 3), 14(2; 3), 15(2; 2), 16(2; -2), 17(2; -4), 18(0; -4), 19(0; -2);
 - 6) 1(-1; 3), 2(-3; 3), 3(-3; 5), 4(-2; 6), 5(2; 6), 6(3; 5), 7(3; 2), 8(-1; -5), 9(-3; -5), 10(1; 2), 11(1; 4), 12(-1; 4).

Изобразите на координатной плоскости xOy множество точек, удовлетворяющих заданному соотношению:

- 8.41 O a) $x \ge 1$; 6) $y \le -2$; B) x < 5; y > -4.
- 8.42 (a) $-1 \le x \le 2$; (b) $xy \ge 0$; (c) $-2 \le y \le 0$; (c) xy < 0.

§9

ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ И ЕГО ГРАФИК

Прочитайте п. 1 в § 9 учебника.

- Является ли линейным заданное уравнение с двумя перемен-9.1 ными:

- a) 5x + 3y + 7 = 0; B) 12c 17d 3 = 0; 6) 6a 4b 1 = 0; P) 45t + 4s + 19 = 0?
- Объясните, почему заданное уравнение не является линейным 9.2 уравнением с двумя переменными:

 - a) $3x^2 + 5y 1 = 0$; 6) $8x 7y^2 + 2 = 0$.
- Является ли заданное уравнение с двумя переменными линей-9.3 ным:

 - a) $\frac{x}{3} + y 5 = 0;$ B) $\frac{x y}{2} + 4 = 0;$
 - 6) $\frac{3}{x} + y 5 = 0$; r) xy + 3 = 0?
- Назовите коэффициенты a, b и c линейного уравнения (ax + by +9.4 + c = 0) с двумя переменными:

 - a) x y + 4 = 0; B) x 1 2y = 0;

 - 6) x 2y = 0; $\frac{y x}{2} = 1$.
- Является ли решением уравнения 5x + 2y 12 = 0 пара чисел: 9.5
 - a) (3: 2):

- в) (12; 5);
- б) (1; 3,5);
- r) (4: -4)?
- Является ли решением уравнения 7a 5b 3 = 0 пара чисел: 9.6

 - a) (2; 8); 6) $\left(1; \frac{4}{5}\right)$; B) (15; 1); r) (8; 10,6)?
- а) Какая из пар чисел (6; 2), (0; 20), (4; 8), (6; 5) является реше-9.7 нием vравнения 3x + v = 20?
 - б) Какая из пар чисел (2; 0), (1; 1), (2,5; 2,5), (7; 8) является решением уравнения 5x - y = 10?

9.8 Составьте какое-нибудь линейное уравнение с двумя переменными, решением которого служит пара чисел:

a) (2; 3);

6)(-6; -5);

B) (6; -5);

r) (-7; 0).

9.9 Не выполняя построения, ответьте на вопрос: какие из точек M(5; 7), N(0; 3,5), K(7; 0), L(2; 3) принадлежат графику уравнения x + 2y - 7 = 0?

Для каждого из данных линейных уравнений найдите значение y, соответствующее заданному значению x:

9.10 a) 3x + 2y - 6 = 0, если x = 0;

б) 5x - 7y - 14 = 0, если x = 0;

в) 15x + 25y + 75 = 0, если x = 0;

г) 81x - 15y + 225 = 0, если x = 0.

9.11 a) 8x + 6y - 11 = 0, если x = 1;

б) 11x - 13y + 16 = 0, если x = -5;

в) 19x - 11y - 24 = 0, если x = 3;

г) 3x + 2y + 30 = 0, если x = -8.

9.12 a) 6x + 2y - 1 = 0, если x = -0.1;

б) 7x - y - 4 = 0, если $x = -2\frac{1}{7}$;

в) 3x + 5y - 10 = 0, если x = 0.5;

(x) 9x - 2y - 3 = 0, если $x = 8\frac{2}{9}$.

Для каждого из данных линейных уравнений найдите значение x, соответствующее заданному значению y:

9.13 a) 6x + 12y - 42 = 0, если y = 0;

б) 17x - 5y + 85 = 0, если y = 0;

в) 8x - 35y = 96, если y = 0;

 \mathbf{r}) 16x + 54y = 64, если y = 0.

9.14 a) 4x + 7y - 12 = 0, если y = -4;

б) 23x - 9y + 5 = 0, если y = -2;

в) 5x - 3y - 11 = 0, если y = 3:

x = 1 г) 2x + 4y + 9 = 0, если y = 1.

9.15 a) 6x + 3y - 2 = 0, если $y = 3\frac{1}{3}$;

б) 3.5x - 5y - 1 = 0, если y = 0.5;

в) 4x - 2y + 11 = 0, если y = -1.5;

г) 8x + 5y - 3 = 0, если $y = 4\frac{2}{5}$.

- а) Известно, что абсцисса некоторой точки прямой, заданной 9.16уравнением 7x - 3y - 12 = 0, равна 3. Найдите ординату этой точки.
 - б) Известно, что ордината некоторой точки прямой, заданной уравнением 11x + 21y - 31 = 0, равна 2. Найдите абсциссу этой точки.

Дано линейное уравнение с двумя переменными. Используя его, выразите каждую из переменных через другую:

- a) a + b = 24; 9.17
- B) m n = 48:
- 6) 7x y = 56:
- r) c + 5d = 30.
- a) 3a + 8b = 24: 9.18
- B) 12m 3n = 48:
- 6) 6c + 5d = 30:
- r) 7x 8y = 56.
- 9.19

- a) 3t 2z + 6 = 0; b) 11u + 2v + 22 = 0; c) 7s + 9t 63 = 0; r) 25r 4w 100 = 0.
- Среди решений уравнения x + 3y 20 = 0 найдите такую пару, 9.20 которая состоит:
 - а) из двух одинаковых чисел;
 - б) из двух таких чисел, одно из которых в 2 раза больше другого.
- Найдите значение коэффициента a в уравнении ax + 5y 40 = 0, 9.21если известно, что решением уравнения является пара чисел:
 - a) (3; 2); 6) (9; -1);
- $B)\left(\frac{1}{3};0\right);$
- r) (-2; 2,4).
- Найдите значение коэффициента b в уравнении 6x + by 35 = 0, 9.22 если известно, что решением уравнения является пара чисел:
 - a) (0: 1):
- б) (3; 8,5);
- B) $(\frac{1}{3}; 11);$
- r) (-5; -13).
- Найдите значение коэффициента c в уравнении 8x + 3y c = 0, 9.23 O если известно, что решением уравнения является пара чисел:
 - a) (2; -1);
- 6) $\left(3\frac{1}{8}; -4\frac{1}{3}\right);$ B) $\left(0,125; -\frac{2}{3}\right);$
- При каком значении m решением уравнения mx + 4y 12m = 09.24 является пара чисел:
 - a) (0; 3);
- 6) $2; \frac{1}{2};$
- в) (12; 0);
- r) $\left(-1; 3\frac{1}{4}\right)$?

Прочитайте п. 2-3 в § 9 учебника.

На координатной плоскости *xOy* постройте график уравнения:

9.25 **a**)
$$x + y - 4 = 0$$
;

B)
$$-x - y + 6 = 0$$
;

6)
$$2x - y + 5 = 0$$
;

r)
$$x + 2y - 3 = 0$$
.

9.26 a)
$$5x + 3y - 15 = 0$$
;

B)
$$6x + 3y + 18 = 0$$
;

$$6) 7x - 4y + 28 = 0;$$

B)
$$6x + 3y + 18 = 0$$
;
r) $8x - 3y - 24 = 0$.

9.27

На координатной плоскости tOs постройте график уравнения:

a)
$$7t + 9s + 63 = 0$$
;

B)
$$5t - 2s = 10$$
;

6)
$$3t - 4s = 12$$
:

r)
$$4t + 9s + 36 = 0$$
.

Постройте на координатной плоскости прямую, заданную уравнением ax + by + c = 0, при следующих значениях коэффициентов а, b и с:

a)
$$a = 2$$
, $b = 1$, $c = -3$:

a)
$$a = 2$$
, $b = 1$, $c = -3$; B) $a = 1$, $b = -2$, $c = 4$;

$$a = -1, b = 3, c = 0$$

r)
$$a = 3$$
, $b = -1$, $c = 0$.

a)
$$a = 0$$
, $b = 2$, $c = -6$;

a)
$$a = 0$$
, $b = 2$, $c = -6$;
b) $a = 0$, $b = -2$, $c = -4$;
c) $a = -1$, $b = 0$, $c = -2$;
r) $a = 5$, $b = 0$, $c = -5$.

6)
$$a = -1$$
, $b = 0$, c

c)
$$a = 5$$
, $b = 0$, $c = -5$

9.30 **a** a)
$$a = c = 0$$
, $b = 0,2$;

6)
$$a = \frac{1}{3}$$
, $b = c = 0$.

9.31

При каких значениях коэффициентов a, b, c прямая ax + by ++ c = 0:

- а) параллельна оси х;
- б) параллельна оси и;
- в) проходит через начало координат;
- г) совпадает с осью х, осью у?

9.32

- а) Докажите, что прямые 5x + 11y = 8 и 10x 7y = 74 пересекаются в точке A(6; -2).
- б) Докажите, что прямые 12x 7y = 2 и 4x 5y = 6 пересекаются в точке В(-1; -2).

9.33

Найдите координаты точки пересечения прямых:

a)
$$x - y = -1 \text{ is } 2x + y = 4;$$

a)
$$x - y = -1$$
 u $2x + y = 4$; 6) $4x + 3y = 6$ u $2x + 3y = 0$.

При каком значении a точка A(3a; 2a-1) принадлежит графику 9.34уравнения:

a) 2x + 3y - 21 = 0; 6) 2x - 3y + 21 = 0?

Рассмотрите пример 7 в § 9 учебника.

9.35 Постройте график уравнения:

B)
$$2 - |x| + 2y = 0$$
;

a)
$$y + |x| - 3 = 0;$$

b) $2 - |x| + 2y = 0;$
6) $y - |x - 1| = 0;$
r) $3y - |2x - 6| = 0.$

- а) Найдите пары натуральных чисел (х; у), которые удов-9.36 летворяют уравнению 5x + 3y = 75.
 - б) Найдите пары натуральных чисел (x; y), которые удовлетворяют уравнению 5x - 3y = 75 и условию x + y < 50.
- Купили несколько роз по 70 р. и несколько гвоздик по 50 р., 9.37 заплатив за всю покупку 460 р. Сколько купили роз и сколько гвоздик?
- В отель приехала группа туристов в количестве 35 человек. Их 9.38 разместили в двух- и трёхместные номера так, что все предоставленные номера оказались заполненными. Сколько всего было предоставлено номеров, если известно, что двухместных номеров было предоставлено больше и их количество выражается нечётным числом?
- Из городов А и В, расстояние между которыми 500 км, навстречу 9.39 друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Встреча произошла через 3 ч после выхода второго поезда. Чему равны их скорости, если известно, что обе они выражаются натуральными числами, кратными 10, отличающимися друг от друга не более чем на 31?
- Будучи в загранпоездке, Аня, Маша и Света зашли утром в кофей-9.40 ню. Аня заказала 2 чашечки кофе и 3 рулета, Маша — чашечку кофе и 4 рулета, а Света — чашечку кофе и 2 рулета. Аня заплатила за завтрак 7 евро, Маша — 6 евро. Сколько заплатила Света?
- Иванов, Петров и Сидоров зашли в хозяйственный магазин за мо-9.41 лотками и гвоздями. Иванов купил 2 молотка и коробку гвоздей, Петров — 3 молотка и 2 коробки гвоздей, а Сидоров — 4 молотка и 4 коробки гвоздей. Вес покупки Иванова равен 4 кг. Петрова — 7 кг. Сколько весит покупка Сидорова?

§10

ЛИНЕЙНАЯ ФУНКЦИЯ И ЕЁ ГРАФИК

60

Прочитайте п. 1 в § 10 учебника.

Преобразуйте уравнение к виду линейной функции y = kx + m и выпишите коэффициенты к и т:

a)
$$y = \frac{15x - 7}{2}$$

a)
$$y = \frac{15x - 7}{2}$$
; B) $y = \frac{19x - 11}{5}$;

6)
$$y = \frac{8x+3}{4}$$
; r) $y = \frac{9x+7}{5}$.

r)
$$y = \frac{9x + 7}{5}$$

a)
$$y = \frac{5 - 3x}{4}$$

a)
$$y = \frac{5-3x}{4}$$
; b) $y = \frac{12+7x}{5}$;

$$6) y = \frac{6+x}{3}$$

6)
$$y = \frac{6+x}{3}$$
; r) $y = \frac{-16-4x}{8}$.

Установите, задаёт ли уравнение линейную функцию:

a)
$$y = x^2 + 5$$
:

a)
$$y = x^2 + 5$$
; B) $y = \frac{x}{5} + 2$;

6)
$$y = \frac{5}{x} + 2$$
; r) $y = (x - 5)^2$.

r)
$$y = (x - 5)^2$$
.

a)
$$y = \frac{x+3}{2}$$

a)
$$y = \frac{x+3}{3}$$
; B) $y = \frac{6-4x}{8}$;

6)
$$y = \frac{2}{3x} - 1$$
; r) $y = \frac{2}{x+3}$.

r)
$$y = \frac{2}{x + 3}$$

Преобразуйте линейное уравнение с двумя переменными х и у к виду линейной функции y = kx + m и выпишите коэффициенты k и m:

- a) 12x y = -17; B) y 36x = -40;

$$5) y - 19x = 5;$$

6) y - 19x = 5: r) 15x + y = 53.

a) x - y = 9; 10.6

B) y - x = 15;

6) y - 7x = 11:

r) 35x - y = 8.

a) 8x + 3y = 24; 10.7

B) 3x + 4y = 12;

6) 5x - 2y = 10;

r) 7x - 5y = 35.

a) 5x + 6y = 0; 10.8

B) 15x - 12y = 0;

6) 7x - 9y = 11;

r) 2x + 3y = 57.

a) 19x + y - 5 = 0; B) y - 7x - 11 = 0; 10.9

6) 7x - 5y + 3 = 11; r) 3x + 4y + 1 = 57.

10.10

a) $\frac{x+y}{2} = 1;$ B) $\frac{x-y}{5} = -1;$

6) $\frac{2x-y}{3} = -2;$ r) $\frac{6x+y}{2} = 3.$

Найдите значение линейной функции при данном значении аргу-10.11 мента:

a) y = 5x + 6 при x = -1; b) y = 12x + 1 при x = 3;

б) y = 7x - 8 при x = 0; г) y = 9x - 7 при x = -2.

Найдите значение линейной функции y = 0.5x - 4, если значение 10.12 её аргумента равно:

a) 6;

б) 3,2;

в) -7: г) -8,9.

10.13 Найдите значение аргумента, при котором линейная функция y = 5x - 3.5 принимает значение:

a) 11,5;

б) 0:

B) -3.5:

r) -6.5.

Выясните, проходит ли график линейной функции y = 3,2x - 510.14

через точку: a) A(3; 4,6);

б) B(1,2; 0); в) C(7,5; 4); г) D(2,2; 2,04).

Прочитайте п. 2 в § 10 учебника.

Постройте график линейной функции в соответствующей системе координат:

10.15

a) y = x + 2; 6) y = x - 3; B) y = x + 5; r) y = x - 1.

a)
$$y = 4x - 6$$

5)
$$y = 5x + 7$$

a)
$$y = 4x - 6$$
; b) $y = 5x + 7$; b) $y = 3x - 3$; c) $y = 2x + 1$.

r)
$$u = 2x + 1$$
.

a)
$$y = -x + 2$$
; B) $y = -x + 1$;

B)
$$y = -x + 1$$

6)
$$y = -x - 3$$
; r) $y = -x - 8$.

$$y = -x - 8$$

a)
$$y = -3x + 2$$
;

a)
$$y = -3x + 2$$
; B) $y = -7x + 3$;

6)
$$y = -4x + 1$$
;

6)
$$y = -4x + 1$$
; $r) y = -5x + 2$.

a)
$$y = 2x$$

б)
$$y = -3x$$

a)
$$y = 2x$$
; b) $y = -3x$; b) $y = -6x$; c) $y = x$.

r)
$$y = x$$

10.20

Постройте график линейной функции y = kx, если известно, что ему принадлежит точка:

- a) M(12; 48); B) M(3; -18);

- б) M(-16; 32); г) M(-14; -21).

10.21

Прямая AB проходит через начало координат и точку B(-21; 84). Графиком какой из указанных линейных функций является прямая АВ:

a)
$$y = -21x + 84$$
; 6) $y = -4x + 4$; B) $y = -4x$;

6)
$$y = -4x + 4$$

B)
$$y = -4x$$

r)
$$y = 4x$$
?

10.22

Задайте линейную функцию формулой s = kt, если известно, что её график на координатной плоскости tOs проходит через начало координат и через точку:

10.23

Зависимость между переменными у и х выражена формулой y = kx. Определите значение коэффициента k и выясните, возрастает или убывает линейная функция y = kx, если:

a)
$$y = 12 \text{ mpu } x = 3$$
:

a)
$$y = 12$$
 при $x = 3$; b) $y = 45$ при $x = -9$;

б)
$$y = -25$$
 при $x = 5$;

б)
$$y = -25$$
 при $x = 5$; г) $y = -99$ при $x = -11$.

Постройте график линейной функции в соответствующей системе координат:

10.24

a)
$$y = 0.4x + 2$$
; B) $y = 0.2x - 4$;

B)
$$y = 0.2x - 4$$

$$6) y = -2.5x - 3;$$

6)
$$y = -2.5x - 3$$
; r) $y = -1.5x + 8$.

10.25 **O** a)
$$y = \frac{1}{3}x - 1;$$
 B) $y = \frac{1}{2}x + 5;$

B)
$$y = \frac{1}{2}x + 5$$

6)
$$y = -\frac{1}{9}x + 1$$
;

6)
$$y = -\frac{1}{2}x + 1$$
; $y = -\frac{2}{3}x - 2$.

a)
$$y = \frac{1}{4}x + \frac{1}{4}$$

10.26 O a)
$$y = \frac{1}{4}x + \frac{1}{4}$$
; B) $y = \frac{5}{6}x - \frac{1}{3}$;

6)
$$y = -\frac{3}{10}x - \frac{2}{5}$$
; r) $y = -\frac{2}{3}x + \frac{1}{3}$.

$$y = -\frac{2}{3}x + \frac{1}{3}.$$

B)
$$s = -4.5t - 2.5$$

6)
$$s = -3.5t + 4.5$$
; r) $s = 2.5t - 3.5$.

r)
$$s = 2.5t - 3.5$$
.

б)
$$u = -\frac{v}{2} + 1$$

B)
$$s = \frac{v}{4} - 2$$

r)
$$u = -\frac{2}{3}t + 1$$

10.29

 Найдите координаты точки пересечения графиков линейных функций:

a)
$$y = x + 4 \text{ } \text{ } \text{ } y = 2x;$$

6)
$$y = -2x + 3$$
 $y = 2x - 5$;

в)
$$y = -x$$
 и $y = 3x - 4$;

r)
$$y = 3x + 2 \text{ if } y = -0.5x - 5.$$

10.30 О Найдите координаты точек пересечения с осями координат графика линейной функции:

a)
$$y = 7.5x + 45$$
:

B)
$$u = 3.4r - 27.2$$

6)
$$y = 2.6x - 7.8$$
:

a)
$$y = 7.5x + 45$$
; B) $y = 3.4x - 27.2$; 6) $y = 2.6x - 7.8$; r) $y = 18.1x + 36.2$.

10.31

Постройте график линейной функции y = 0.4x. Найдите по графику:

- а) значение y, соответствующее значению x, равному 0; 5; 10; -5;
- б) значение x, которому соответствует значение y, равное 0; 2; 4; -2;
- в) решения неравенства 0.4x > 0;
- г) решения неравенства $-2 \le y \le 0$.

10.32

Постройте график линейной функции y = -2.5x. Найдите по графику:

- а) значение y, соответствующее значению x, равному 0; 2; -2;
- б) значение x, которому соответствует значение y, равное 0; 5; -5;
- в) решения неравенства $-2.5x \ge 0$;
- Γ) решения неравенства 0 < y < 2.

Прочитайте п. 5 в § 10 учебника.

10.33 O

Постройте график линейной функции y = x + 4. Найдите:

- а) координаты точек пересечения графика с осями координат;
- б) значение y, соответствующее значению x, равному -2; -1; 1;
- в) значение x, которому соответствует значение y, равное 1; -2; 7;
- г) выясните, возрастает или убывает заданная линейная функция.

Постройте график линейной функции y = -4x + 8. Найдите: 10.34

- а) координаты точек пересечения графика с осями координат;
- б) значение y, соответствующее значению x, равному 0; 1; 2; 3;
- в) значение x, которому соответствует значение y, равное 0; 4; 8;
- г) выясните, возрастает или убывает заданная линейная функпия.

Рассмотрите пример 5 в § 10 учебника.

10.35 O Постройте график функции y = 2x - 4.

- а) Найдите координаты точки пересечения графика с осью абсцисс.
- б) Выделите ту часть графика, которая лежит выше оси абсцисс. Какие по знаку значения у соответствуют выделенной части графика? Какие значения принимает при этом выражение 2x - 4?
- в) Определите, какие значения х соответствуют выделенной части графика.
- г) Найдите, при каких значениях x выполняется неравенство y < 0. Запишите выводы, сделанные в пунктах б), в), г), в виде неравенств.

10.36 O

Постройте график функции y = -0.5x + 2 и прямую y = 4.

- а) Найдите координаты точки пересечения прямых.
- б) Выделите ту часть графика функции y = -0.5x + 2, которая расположена ниже прямой y = 4. Какие значения y соответствуют выделенной части графика? Какие значения при этом принимает выражение -0.5x + 2?
- в) Определите, какие значения х соответствуют выделенной части графика линейной функции.
- г) Найдите, при каких значениях x выполняется неравенство y > 4. Какие значения при этом принимает выражение -0.5x + 2?

10.37 О Постройте график функции y = -3x + 6.

- а) С помощью построенного графика решите уравнение -3x + 6 = 0.
- б) Выделите ту часть графика, которая соответствует условию у > 0. Какие значения аргумента соответствуют выделенной части графика?
- в) С помощью графика решите неравенство -3x + 6 > 0.
- г) Решите неравенство -3x + 6 < 0.

- Постройте график функции y = 2x 6. 10.38
 - а) C помощью построенного графика решите уравнение 2x 6 = 0.
 - б) Выделите ту часть графика, которая соответствует условию y < 0. При каких значениях аргумента функция принимает отрицательные значения?
 - в) C помощью графика решите неравенство $2x 6 \le 0$.
 - г) Решите неравенство $2x 6 \ge 0$.
- Постройте график линейной функции y = 3x 9 и с его помо-10.39 O щью найдите:
 - а) координаты точки пересечения графика с осью абсцисс;
 - б) все значения аргумента, при которых выполняется неравен-CTBO y < 0;
 - в) решение неравенства 3x 9 > 0;
 - г) значения x, при которых выполняется неравенство y > -9.
- 10.40 Постройте график линейной функции y = -2x + 6 и с его помощью найдите:
 - а) координаты точки пересечения графика с осью абсцисс;
 - б) все значения аргумента, при которых выполняется неравен-CTBO y > 0;
 - в) решение неравенства -2x + 6 < 0;
 - г) значения x, при которых выполняется неравенство y > 6.
- 10.41 О Постройте график линейной функции у = 3х 6 и с его помощью решите неравенство:
 - a) 3x 6 > 0; B) 3x 6 < 0;
- - 6) $3x 6 \le 0$; r) $3x 6 \ge 0$.
- 10.42 O Постройте график линейной функции y = 4x + 4 и с его помощью решите неравенство:
 - a) 4x + 4 > 0; B) 4x + 4 < 0;

 - 6) $4x + 4 \le 0$; r) $4x + 4 \ge 0$.
- 10.43 О Построив график линейной функции $y = 3 \frac{1}{2}x$, решите неравен-CTBO:
 - a) $3 \frac{1}{2}x \le 0$; B) $3 \frac{1}{2}x \ge 0$;
 - 6) $3 \frac{1}{2}x \ge -1$; r) $3 \frac{1}{2}x \le 4$.

10.44	0	a)	Найдите	точку	графика	линейной	функции	y	=	3x	-	12,	аб-
-			сцисса ко	оторой	равна орд	динате.							

- б) Найдите точку графика линейной функции y = 5x + 4, абсцисса которой равна ординате.
- а) Найдите точку графика линейной функции y = 2x + 9, абсцисса 10.45 O и ордината которой — противоположные числа.
 - б) Найдите точку графика линейной функции y = -3x + 8, абсцисса и ордината которой — противоположные числа.
- а) Найдите точку графика линейной функции y = x + 15, абсцис-10.46 са которой в 2 раза меньше ординаты.
 - б) Найдите точку графика линейной функции y = 2x 35, абсцисса которой в 3 раза больше ординаты.
- Найдите значение m, если известно, что график линейной функ-10.47 ции y = -5x + m проходит через точку:
 - a) N(1; 2);
- б) K(0,5; 4);
- в) N(-7; 8); г) P(1,2; -3).
- 10.48 O Найдите значение k, если известно, что график линейной функции y = kx + 4 проходит через точку:

- a) C(3; 5); 6) $D\left(\frac{1}{2}; 1\right);$ B) E(-6; -8); r) $F\left(\frac{1}{3}; -8\right).$

Прочитайте п. 4 в § 10 учебника.

Постройте график линейной функции y = 2x + 3 и выделите его часть, соответствующую заданному промежутку оси x:

- 10.49
- a) [0; 1]; 6) [-2; 2]; B) [1; 3]; r) [-1; 1].

- 10.50
 - a) $(-\infty; 1)$; b) $(-2; +\infty)$; b) $(-\infty; -2)$; r) $(0; +\infty)$.

- 10.51
- a) $(-\infty; 1];$ b) $[-2; +\infty];$ b) $(-\infty; -2];$ r) $[0; +\infty).$

- 10.52
- a) (-2; 0); 6) (-2; -1); B) (-1; 1); r) (-1; 3).

Постройте график линейной функции y = -3x + 1 и выделите его часть, соответствующую заданному промежутку оси х:

- a) [1; 2); 10.53
- б) (-2; -1]; в) [0; 1); г) (-1; 0].

a)
$$(-\infty; 0]$$
; b) $(2; +\infty)$; b) $(-\infty; 0)$; r) $[1; +\infty)$.

r)
$$[1: +\infty)$$
.

Найдите наименьшее и наибольшее значения линейной функции:

a)
$$y = 3x$$
 на отрезке [0; 1];

в)
$$y = 3x$$
 на луче $(-\infty; -1];$

б)
$$y = 3x$$
 на луче [1; + ∞); г) $y = 3x$ на отрезке [-1; 1].

г)
$$y = 3x$$
 на отрезке $[-1; 1]$

а)
$$y = -2x$$
 на полуинтервале [-2; 2);

б)
$$y = -2x$$
 на луче $[0; +\infty);$

в)
$$y = -2x$$
 на луче $(-\infty; 1];$

г)
$$y = -2x$$
 на полуинтервале (-1; 0].

$$\bigcirc$$
 a) $y = 0.4x$, если $x \in [0; 5];$

б)
$$y = 0.4x$$
, если $x \in [-5; +\infty)$;

в)
$$y = 0.4x$$
, если $x \in (-\infty; 0]$;

$$y = 0.4x$$
, если $x \in (-5; 5)$.

10.59 О а)
$$y = -\frac{3}{4}x$$
, если $x \in [-4; 4]$;

б)
$$y = -\frac{3}{4}x$$
, если $x \in (0; +\infty)$;

в)
$$y = -\frac{3}{4}x$$
, если $x \in [-4; +\infty)$;

г)
$$y = -\frac{3}{4}x$$
, если $x \in (0; 4]$.

Найдите наименьшее и наибольшее значения линейной функции на заданном промежутке:

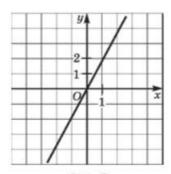
(a)
$$y = x + 3$$
, [-2; -1];
 (b) $y = -x + 5$, [-1; 4];
 (c) $y = x + 3$, [-3; -1];
 (d) $y = x + 3$, [-3; -1];
 (e) $y = -x + 5$, [2; 5].

B)
$$y = x + 3$$
, $[-3; -1]$

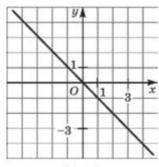
a)
$$y = 4x - 1$$
, [-1; 2]

B)
$$y = 3x - 2$$
, [-1; 1];

6)
$$y = -2x + 5$$
, [0: 41:

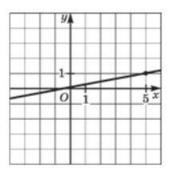

r)
$$y = -5x + 7$$
 [0:

10.62

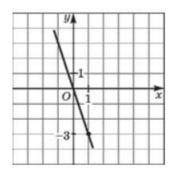

a)
$$y = 4x - 1$$
, [-1; 2]; B) $y = 3x - 2$, [-1; 1]; 6) $y = -2x + 5$, [0; 4]; r) $y = -5x + 7$, [0; 2].

- Постройте график линейной функции y = x + 5 и с его помощью найдите:
- а) координаты точек пересечения графика с осями координат;
- б) все значения аргумента, при которых выполняется неравен-CTBO y < 0;
- в) отрезок оси x, на котором выполняется неравенство $0 \le y \le 5$;
- г) наименьшее и наибольшее значения линейной функции на отрезке [-4; 1].

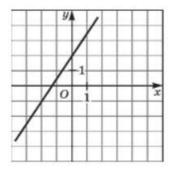
- 10.63 О Постройте график линейной функции y = -3x + 6 и с его помощью найдите:
 - а) координаты точек пересечения графика с осями координат;
 - б) отрезок оси x, на котором выполняется неравенство $-3 \le y \le 0$;
 - в) все значения аргумента, при которых выполняется неравенство y > 0;
 - г) наименьшее и наибольшее значения линейной функции на отрезке [-1; 2].
- 10.64 Определите знаки коэффициентов k и m, если известно, что график линейной функции y = kx + m проходит:
 - а) через первый, второй и третий координатные углы плоскости xOy;
 - б) через первый, второй и четвёртый координатные углы плоскости xOy;
 - в) через первый, третий и четвёртый координатные углы плоскости xOy;
 - г) через второй, третий и четвёртый координатные углы плоскости xOy.
- 10.65 О Как расположен на координатной плоскости xOy график линейной функции y = kx + m, если известно, что:
 - a) k > 0, m = 0;
- B) $k = 0, m \neq 0$;
- 6) k < 0, m = 0;
- r) k = 0, m = 0?
- 10.66 О Составьте уравнение прямой, проходящей через точку пересечения графиков линейных функций y = 9x 28 и y = 13x + 12 параллельно:
 - а) оси абсцисс;
- б) оси ординат.
- 10.67 О Задайте формулой линейную функцию, график которой изображён:
 - а) на рис. 7;
- в) на рис. 9;
- б) на рис. 8;
- г) на рис. 10.

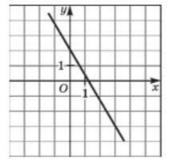


Puc. 7

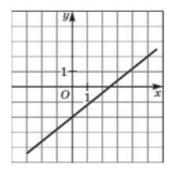


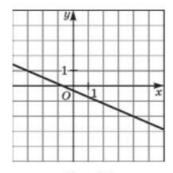
Puc. 8


Puc. 9

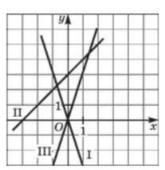

Puc. 10

10.68 Определите знаки коэффициентов k и m, если известно, что график линейной функции y = kx + m изображён:


- а) на рис. 11;
- в) на рис. 13;
- б) на рис. 12;
- г) на рис. 14.


Puc. 11

Puc. 13



Puc. 12

Puc. 14

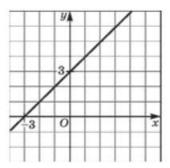
10.69 О На рис. 15 изображены графики функций y = 3x, y = -3x, y = x + 3. Укажите, какая формула соответствует тому или иному графику.

Puc. 15

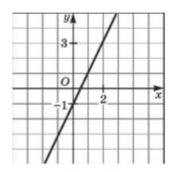
10.70 О Выясните, корректно ли задание: найти точку пересечения указанных прямых. Если задание корректно, то выполните ero.

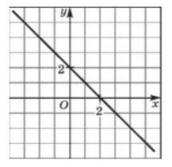
a)
$$y = 2x$$
, $y = 2x - 3$;

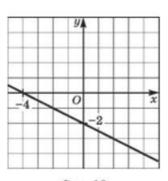
6)
$$y = 3x$$
, $y = 2x - 1$;


B)
$$y = 5 - x$$
, $y = -x$;

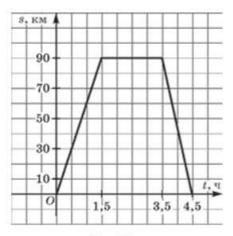
r)
$$y = 4$$
, $y = x + 3$.


Составьте уравнение прямой y = kx + m, изображённой на задан-10.71 O ном рисунке:


- в) рис. 18;
- б) рис. 17; г) рис. 19.


Puc. 16

Puc. 17



Puc. 18

Puc. 19

Puc. 20

Puc. 21

Рассмотрите пример 6 в § 10 учебника.

72

10.72

- Автомобиль вёз с постоянной скоростью груз на базу. Потратив некоторое время на разгрузку, он вернулся назад. На рис. 20 изображён график движения автомобиля.
- а) Каково расстояние до базы, сколько времени ехал до базы автомобиль и с какой скоростью?
- б) Сколько времени длилась разгрузка?
- в) Сколько времени ехал автомобиль обратно и с какой скоростью?
- г) Сколько времени продолжалась вся поездка и какой суммарный путь пройден автомобилем?
- д) Чему равна средняя скорость движения: без учёта времени разгрузки; с учётом времени разгрузки?

10.73

- На рис. 21 изображён график движения туриста в течение одного дня. Пользуясь им, ответьте на следующие вопросы:
- а) Сколько всего времени длились привалы?
- б) Сколько времени длился весь маршрут (от дома до дома)?
- в) Какой путь пройден туристом за весь день?
- г) На каком из четырёх участков движения скорость туриста была наибольшей? Найдите скорости движения на каждом из четырёх участков.
- д) Чему равна средняя скорость движения: без учёта времени привалов; с учётом времени привалов?

§ 11

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ГРАФИКОВ ЛИНЕЙНЫХ ФУНКЦИЙ

Не выполняя построения, установите взаимное расположение графиков линейных функций:

11.1 a)
$$y = 2x$$
 и $y = 2x - 4$;

B)
$$y = 4x + 6$$
 $y = 4x + 6$

6)
$$y = x + 3$$
 $y y = 2x - 1$:

a)
$$y = 2x$$
 и $y = 2x - 4$;
b) $y = 4x + 6$ и $y = 4x + 6$;
c) $y = x + 3$ и $y = 2x - 1$;
r) $y = 12x - 4$ и $y = -x + 1$.

11.2 a)
$$y = 0.5x + 8 \text{ if } y = \frac{1}{2}x + 8$$
;

a)
$$y = 0.5x + 8$$
 и $y = \frac{1}{2}x + 8$; B) $y = 5x + 8$ и $y = \frac{10}{2}x - 2$;

6)
$$y = \frac{3}{10}x - 2$$
 и $y = 7x - 4$;

6)
$$y = \frac{3}{10}x - 2$$
 if $y = 7x - 4$; if $y = 105x - 11$ if $y = \frac{3}{8}x + 15$.

a)
$$y = \frac{14}{2}x - 5$$
 u $y = 7x + 3$;

6)
$$y = 6x + \frac{1}{3}$$
 if $y = 7 + 6x$;

B)
$$y = \frac{12}{16}x + \frac{8}{10}$$
 If $y = \frac{15}{20}x + \frac{4}{5}$;

r)
$$y = \frac{8}{9}x - \frac{1}{7}$$
 и $y = \frac{8}{9}x + \frac{1}{10}$.

Подставьте вместо символа * такое число, чтобы графики заданных линейных функций были параллельны:

11.3

a)
$$y = 8x + 12$$
 и $y = *x - 3$;
б) $y = *x - 4$ и $y = 5 + 6x$;

в)
$$y = *x + 6$$
 и $y = 12 - 7x$; г) $y = 4x - 1$ и $y = *x + 11$.

a)
$$y = *x + 5$$
 u $y = *x + 7$;

B)
$$y = -*x - 3$$
 $y = *x + 1$;

a)
$$y = *x + 5$$
 и $y =$
6) $y = 45x - 9$ и $y =$

6)
$$y = 45x - 9$$
 H $y = 45x + *$

6)
$$y = 45x - 9$$
 и $y = 45x + *$; r) $y = 1,3x + 21$ и $y = 1,3x - *$.

Подставьте вместо символа * такое число, чтобы графики заданных линейных функций пересекались:

a)
$$y = 6x + 1$$
 u $y = *x - 3$;

B)
$$y = 7x + 8$$
 u $y = *x - 4$;

б)
$$y = *x + 5$$
 и $y = 9x - 1$;

$$y = x - 15$$
 $y = 3x + 2$.

a)
$$y = 2x + * u y = x - *;$$

B)
$$y = 3x - * u y = -x - *$$
;

$$\text{ б) } y = *x - 1 \text{ и } y = *x + 3;$$

r)
$$y = *x + 17 \text{ } \text{u} \text{ } y = *x + 9.$$

Подставьте вместо символа * такое число, чтобы графики заданных линейных функций совпадали; установите, в каких случаях это задание некорректно:

- 11.8 a) y = *x + 5 if y = x + 7;
 - 6) y = *x + 8 if y = 5x + 8:
 - в) y = 6x 3 и y = *x 3;
 - r) y = 7x 9 и y = *x 8.
- 11.9 a) y = 8x + * u y = 7x + 8;
 - б) y = 4.5x * и y = 4.5x *;
 - B) y = 0.35x * u y = 0.35x *;
 - y = 2x + * u y = 2x + *.
- Задайте формулой линейную функцию y = kx, график которой параллелен графику данной линейной функции:
 - a) y = 4x 3;
- B) $y = \frac{1}{3}x + 2;$
- 6) y = -3x + 1;
- r) y = -0.5x 4.
- Задайте формулой линейную функцию y = kx, график которой параллелен прямой:
 - a) x + y 3 = 0;
- B) 2x y + 4 = 0;
- $6) \ 2x 3y 12 = 0;$
- r) -x + 2y + 6 = 0.

Найдите координаты точки пересечения заданных прямых; если это невозможно, объясните почему:

- 11.12 O a) y = 2x + 3 if y = 3x + 2;
 - 6) y = -15x 14 y = -15x + 8;
 - B) y = 7x + 4 y = -x + 4;
 - y = 7x + 6 if y = 7x + 9.
- - 6) y = -3x + 4 и y = 2x 1;
 - в) y = 13x 8 и y = 13x 8;
 - y = -5x + 3 y = x 3.
- 11.14 O a) y = x + 5 и y = x + 7;
 - 6) y = 1.5x + 4 y = 1.5x + 4;
 - B) y = -2x + 8 и y = 8;
 - r) y = 79x и y = 75x.

- Не выполняя построения графиков, найдите координаты точки 11.15 пересечения прямых:
 - a) y = x + 5 $\mu y = 1.5x + 4$;
- B) y = -2x + 8 y = x 7;
- б) y = 75x 1 и y = 78x;
- r) y = -49x y = -42x + 3.
- 11.16 O Задайте линейную функцию, график которой параллелен графику данной линейной функции и проходит через данную точку M:
 - a) y = 3x, M(0; -2);
- B) y = -5x, M(0; 3);
- 6) y = -2.5x, M(2; 1); r) y = 1.5x, M(-4; -3).
- 11117 0 Задайте линейную функцию, график которой параллелен данной прямой и проходит через заданную точку N:
 - a) x + y 1 = 0, N(0; -2);
 - 6) -4x + 2y + 1 = 0, N(1; 4);
 - B) x y + 3 = 0, N(0; 1);
 - r) -9x 3y + 2 = 0, N(-2; 1).
- 11.18 О Даны две возрастающие линейные функции $y = k_1 x + m_1$, $y = k_{o}x + m_{o}$. Подберите такие коэффициенты k_{i} , k_{o} , m_{i} , m_{o} , чтобы графики линейных функций были параллельны.
- Даны две убывающие линейные функции y = k, x + m, и 11.19 O $y = k_2 x + m_2$. Подберите такие коэффициенты k_1, k_2, m_1, m_2 , чтобы графики линейных функций совпадали.
- 11.20 О Даны две линейные функции $y = k_1 x + m_1$, $y = k_2 x + m_2$. Подберите такие коэффициенты k_1 , k_2 , m_1 , m_2 , чтобы графики линейных функций пересекались, причём обе функции были:
 - а) возрастающими;
- б) убывающими.
- Построив графики линейных функций y = 2x 3 и y = 3x 7, pe-11.21 O шите заданное уравнение или неравенство:
 - a) 2x 3 = 3x 7; B) 2x 3 < 3x 7;
 - 6) 2x-3>3x-7; r) $2x-3 \ge 3x-7$.
- - Рассмотрите пример 3 в § 11 учебника.
- 11.22 Графики линейных функций y = kx + m и y = ax + b пересекаются в точке, лежащей внутри третьего координатного угла координатной плоскости xOy. Определите знаки коэффициентов k, m, a, b, если известно, что прямая y = kx + m не проходит через второй координатный угол, а прямая y = ax + b проходит через начало координат.

- 11.23 Для двух линейных функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$ подберите такие коэффициенты k_1 , k_2 , b_1 , b_2 , чтобы их графики пересекались во втором координатном угле и обе функции были бы возрастающими.
- 11.24 Для двух линейных функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$ подберите такие коэффициенты k_1 , k_2 , b_1 , b_2 , чтобы их графики пересекались в первом координатном угле и одна из функций была бы убывающей, а вторая возрастающей.
- 11.25 Для двух линейных функций $y = k_1 x + b_1$ и $y = k_2 x + b_2$ подберите такие коэффициенты k_1 , k_2 , b_1 , b_2 , чтобы их графики пересекались во втором координатном угле и обе функции были бы убывающими.
- 11.26 При каком значении *а* графики данных линейных функций не имеют общих точек:

a)
$$y = (2a - 3)x + 5a$$
, $y = (a + 2)x - 3a - 1$;

6)
$$y = (3a + 2)x + 7a - 2$$
, $y = (11a - 6)x + 3a + 2$;

B)
$$y = a + 1 - 3ax$$
, $y = (a + 8)x + a^2$;

r)
$$y = (7 + 3a)x + a^2 - 1$$
, $y = (a + 1)x - 3a - 1$?

Постройте на координатной плоскости *xOy* множество точек, координаты которых удовлетворяют заданным соотношениям:

11.27 a)
$$\begin{cases} x + y \ge 0, \\ 2x - y \le 0; \end{cases}$$
 6)
$$\begin{cases} x - 1 - y \le 0, \\ 2x + 3y \le 6. \end{cases}$$

11.28 a)
$$\begin{cases} |x| \leq 2, \\ y - 2x \geq 0; \end{cases}$$
 6)
$$\begin{cases} |y| \leq 3, \\ x + y + 3 \geq 0. \end{cases}$$

111.29 a)
$$\begin{cases} |x-1| \le 2, \\ |y-2| \le 2; \end{cases}$$
 6)
$$\begin{cases} |x| \ge 1, \\ |x+1| \le 3. \end{cases}$$

11.30 Принадлежит ли начало координат множеству точек координатной плоскости *xOy*, заданному следующими условиями:

$$\begin{cases} x - y - 2 \le 0, \\ x + y + 2 \ge 0, \\ |y + 1| < 1? \end{cases}$$

§ 12 УПОРЯДОЧЕНИЕ ДАННЫХ. ТАБЛИЦЫ РАСПРЕДЕЛЕНИЯ

12.1 О По таблице примера 2 из § 12 в главе 2 учебника:

- а) найдите объём и моду оценок (включая «н») за контрольную;
- б) определите часть (долю) пятёрок среди всех оценок (включая «H»);
- в) определите части (доли) остальных оценок;
- г) составьте таблицу распределения процентных долей оценок.

12.2 Приведите левые части следующих уравнений к виду ax + by + c:

- 1) 3x 4y + 5 = 0;
- 2) 0.5(4x + 1) y = 0;
- 3) y x = 0;
- 4) x = 0;
- 5) y = 0:
- 6) 5y 4 = 0;
- 7) 3(x + 2y) 8 = 0;
- 8) 5-1.5(y-2x)=0;
- 9) 2(x + 2y) 21 = 0;
- 10) -(2y-3x)+1=0;
- 11) 5 3(y x) = 0;
- 12) -(x-y)+1=0;
- 13) 0.5(3y-2x)+5=0.
- а) Запишите ряд данных, состоящий из коэффициентов при переменной х.
- б) Найдите объём и размах полученного ряда данных.
- в) Найдите его медиану.
- г) Составьте упорядоченный ряд данных.
- д) Чему равна мода? Сколько раз она встретилась в ряде данных?

12.3

Выполните задание, используя ряд данных, полученный в задаче 2a).

- а) Сколько раз встретилось число –1, число 0, число 1, число 2?
- б) Составьте таблицу распределения полученных данных.
- в) Сложите все числа во второй строке таблицы распределения. Объясните, почему ответ совпал с объёмом ряда данных.
- г) Может ли во второй строке какой-либо таблицы распределения данных стоять число 0?

Десять спортсменов соревновались в прыжках в высоту, в длину, вправо и влево. Вот какие места они заняли:

	Высота	Длина	Вправо	Влево	Сумма
Вова	5	3	8	2	
Вася	9	8	3	7	
Витя	8	9	7	3	
Валера	1	4	5	8	
Веня	3	2	2	10	
Виталик	7	7	4	9	
Вадик	4	1	9	4	
Владик	10	10	1	5	
Витас	2	5	10	1	
Ваня	6	6	6	6	

- 12.4 O
- а) Для каждого прыгуна подсчитайте сумму занятых им мест.
 - б) Кто из прыгунов победил (набрал наименьшую сумму мест)?
 - в) Кто из прыгунов оказался последним (набрал наибольшую сумму мест)?
 - г) Каковы объём, размах и медиана суммы занятых мест?
- 12.5
- а) Сколько прыгунов набрали 27 по сумме мест?
- б) Сколько прыгунов набрали 18 по сумме мест?
- в) Составьте таблицу распределения сумм мест.
- г) Постройте круговую диаграмму распределения сумм мест.

Используя в качестве коэффициентов k и m числа -2, -1, 0, 1, 2, составляют различные формулы линейной функции y = kx + m.

- 12.6
- а) Сколько всего различных формул можно составить?
- б) У скольких из полученных формул коэффициент k будет отрицателен?
- в) У скольких из этих формул коэффициент т будет неотрицателен?
- г) У скольких из этих формул коэффициенты k и m будут различны по знаку?
- 12.7
- Графики скольких из этих функций будут:
 - а) проходить через начало координат;
 - б) проходить через точку A(1; 0);
 - в) проходить через точку B(0; 1);
 - r) параллельны графику функции y = 5 x?

FIJARA

СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ **УРАВНЕНИЙ С ДВУМЯ** ПЕРЕМЕННЫМИ

513

основные понятия

Прочитайте п. 1 в § 13 учебника.

- Является ли пара чисел (1; 1) решением линейного уравнения с 13.1 двумя переменными:
 - a) 7x + 3y = 10; B) 6x + 8y = 1;

 - 6) 6x 2y = 4; r) 15x 12y = 3?
- Подберите несколько решений линейного уравнения 3x 2y = 5. 13.2
- Составьте линейное уравнение с двумя переменными, решением 13.3 которого служит пара чисел:
 - a) (2; 5);
- б) (-3; 1);
- в) (-7; -2); г) (-4; 5).
- 13.4 Найдите все пары натуральных чисел, которые удовлетворяют уравнению x + y = 15.
- Является ли пара чисел (60; 30) решением системы уравнений: 13.5

Какая из пар чисел является решением системы уравнений 13.6

$$\begin{cases}
2x + 11y = 15, \\
10x - 11y = 9.
\end{cases}$$

r) (1: 2)?

Является ли решением системы уравнений 13.7

$$\begin{cases} 4x - 3y = 7, \\ 5x + 2y = 26 \end{cases}$$

пара чисел: а) (1: 2);

Убедитесь, что пара чисел (12; 15) является решением системы 13.8 уравнений:

a)
$$\begin{cases} x + y = 27, \\ 2x - 4y = -36; \end{cases}$$
 6)
$$\begin{cases} 2x - y = 9, \\ 4y = 5x. \end{cases}$$

$$\begin{cases} 2x - y = 9 \\ 4y = 5x. \end{cases}$$

Даны два линейных уравнения с двумя переменными: x - y = 2 и 13.9 x + y = 8.

Найдите пару чисел, которая:

- а) является решением первого уравнения, но не является решением второго;
- б) является решением второго уравнения, но не является решением первого;
- в) является решением и первого, и второго уравнений;
- г) не является решением ни первого, ни второго уравнения.

В заданном уравнении выразите одну переменную через другую:

13.10 a)
$$2x +$$

a)
$$2x + y = 4$$
; B) $3a + b = 12$;

6)
$$x + 6y = 9$$
; r) $c + 8d = 15$.

r)
$$c + 8d = 15$$

13.11 a)
$$6x - y$$

a)
$$6x - y = 18$$
; B) $18m - n = 3$;

6)
$$-a - 5b = 20$$
;

r)
$$-p - 9q = 4$$
.

a)
$$3s - 2t = 8$$
;

a)
$$3s - 2t = 8$$
; b) $9r - 13s = 17$;

6)
$$7z + 4q = 11$$
; r) $5u + 7v = 21$.

r)
$$5u + 7v = 21$$

а) Подберите три решения линейного уравнения 4x - 2y = 3 так, 13.13 O чтобы переменные х и у имели разные знаки.

б) Подберите три решения линейного уравнения 3x + 4y = 2 так, чтобы переменные х и у имели одинаковые знаки.

Найдите значение коэффициента a в уравнении ax + 8y = 20, если 13.14 известно, что решением этого уравнения является пара чисел:

6)(-3; -2).a) (2; 1);

а) Найдите натуральные решения уравнения 2x + 3y - 7 = 0. 13.15

б) Найдите пары натуральных чисел (х; у), которые удовлетворяют уравнению 5x - 2y = 13 и неравенству $x + y \le 25$.

Составьте какую-либо систему двух линейных уравнений с двумя 13.16 переменными, если известно, что решением этой системы является пара чисел:

a) (0; 6);

б) (-3; -4); в) (-1; 2); г) (5; -7).

К каждому из следующих уравнений подберите второе уравнение 13.17 O так, чтобы полученная система имела бесконечно много решений:

a) 8x + y = 5; B) 7x + 8y = 4; 6) 3x - 2y = 1; P) x - y = 3.

13.18 • К каждому из следующих уравнений подберите второе уравнение так, чтобы полученная система не имела решений:

a) 7x - 5y = 3; b) 45x - 31y = 13; c) 6x + 11y = 8; r) 54x - 23y = 40.

Прочитайте п. 2 в § 13 учебника.

Решите графически систему уравнений:

13.19 O a) $\begin{cases} y = x, \\ y = 3x - 4; \end{cases}$ B) $\begin{cases} y = 5x, \\ y = -2x + 7; \end{cases}$

6) $\begin{cases} y = -3x, \\ y = 3 - 4x; \end{cases}$ r) $\begin{cases} y = -\frac{1}{4}x, \\ y = x - 5. \end{cases}$

13.20 **O** a) $\begin{cases} y = x - 1, \\ x + 3y = 9; \end{cases}$ B) $\begin{cases} y = -2x, \\ x - 2y = 0; \end{cases}$

6) $\begin{cases} 3x - 2y = 12, \\ x + 2y = -4; \end{cases}$ r) $\begin{cases} x - 3y = 8, \\ 2x - 3y = 10. \end{cases}$

13.21 O a)
$$\begin{cases} 2x + y = 1, \\ 2x + y = 3; \end{cases}$$

B)
$$\begin{cases} y = -\frac{1}{3}x + 2, \\ x + 3y = 3; \end{cases}$$

$$\begin{cases} y = \frac{2}{5}x - 1, \\ 4x - 10y = 10; \end{cases}$$

r)
$$\begin{cases} x - 3y = 2, \\ 2x - 6y = 4. \end{cases}$$

a)
$$\begin{cases} x + y = -5, \\ 3x - y = -7 \end{cases}$$

$$\begin{cases} x - 2y = 1 \\ y - x = 1 \end{cases}$$

$$\begin{cases} x - 2y = 7, \\ 3x + 2y = 5 \end{cases}$$

13.22 O a)
$$\begin{cases} x + y = -5, \\ 3x - y = -7; \end{cases}$$
 B)
$$\begin{cases} x - 2y = 1, \\ y - x = 1; \end{cases}$$
 6)
$$\begin{cases} x - 2y = 7, \\ 3x + 2y = 5; \end{cases}$$
 r)
$$\begin{cases} x + y = -2, \\ 2x - y = -4. \end{cases}$$

13.23 (a) Дана система уравнений $\begin{cases} x + ay = 35, \\ bx + 2y = 27. \end{cases}$

Известно, что пара чисел (5; 6) является её решением. Найдите значения а и b.

б) Дана система уравнений $\begin{cases} ax - 3y = 7, \\ 5x + by = 26. \end{cases}$

Известно, что пара чисел (10; 5) является её решением. Найдите значения а и b.

13.24

Решите графически систему уравнений $\begin{cases} ax + 3y = 11, \\ 5x + 2y = 12. \end{cases}$

если известно, что первое уравнение этой системы обращается в верное равенство при x = 5 и y = -3.

13.25

Купили некоторое количество яблок по 30 р. за 1 кг и некоторое количество груш по 38 р. за 1 кг. Все количества выражаются целыми числами (в кг). Сколько всего купили фруктов, если за покупку заплатили 400 р.?

13.26

Из двух пунктов, расстояние между которыми равно 580 км, вышли навстречу друг другу два поезда. До встречи первый был в пути 4 ч, а второй — 3 ч, причём оба двигались с постоянной скоростью и без остановок. Найдите скорость поездов, если известно, что каждая из них выражается целым числом, кратным 10 и большим 50.

13.27

Какое двузначное число обладает следующим свойством: если между его цифрами поместить цифру 0, то число увеличится в 6 раз?

- Когда каждую из сторон прямоугольника увеличили на 2 см, 13.28 оказалось, что площадь прямоугольника увеличилась на 16 см2. Найдите стороны заданного прямоугольника, если известно, что они выражаются целыми числами (в см).
- Скорый поезд проходит за 5 ч на 40 км больше, чем пассажирский 13.29 за 6 ч. Найдите их скорости, у, км/ч и у, км/ч соответственно, если известно, что числа v, и v, делятся на 10 и оба меньше 100, но больше 50.

§ 14 МЕТОД ПОДСТАНОВКИ

Решите систему уравнений: 14.1

a)
$$\begin{cases} y = 9x + 5, \\ y = -6x - 25; \end{cases}$$
 B)
$$\begin{cases} y = -8x - 15, \\ y = 5x + 24; \end{cases}$$

a)
$$\begin{cases} y = 9x + 5, \\ y = -6x - 25; \end{cases}$$
b)
$$\begin{cases} y = -8x - 15, \\ y = 5x + 24; \end{cases}$$
6)
$$\begin{cases} y = 13x - 7, \\ y = 23x - 6; \end{cases}$$
r)
$$\begin{cases} y = -11x + 9, \\ y = -21x + 11. \end{cases}$$

Решите систему уравнений методом подстановки:

14.2 O a)
$$\begin{cases} y = 1 - 7x, \\ 4x - y = 32; \end{cases}$$
 B)
$$\begin{cases} y = x + 1, \\ 5x + 2y = 16; \end{cases}$$
 6)
$$\begin{cases} x = y + 2, \\ 3x - 2y = 9; \end{cases}$$
 r)
$$\begin{cases} x = 2y - 3, \\ 3x + 2y = 7. \end{cases}$$

14.3 O a)
$$\begin{cases} x = 4y, \\ x + 5y = 99; \end{cases}$$
 B) $\begin{cases} y = 6x, \\ 4x + y = 150; \end{cases}$ 6) $\begin{cases} y = -4x, \\ x - y = 10; \end{cases}$ r) $\begin{cases} x = -5y, \\ x - 4y = -18. \end{cases}$

6)
$$\begin{cases} y = -4x, \\ x - y = 10; \end{cases}$$
 r) $\begin{cases} x = -5y, \\ x - 4y = -18 \end{cases}$

14.4 O a)
$$\begin{cases} x = 10y, \\ 2x + 3y = 46; \end{cases}$$
 B)
$$\begin{cases} x = -0.5y, \\ -6x - 2y = 9; \end{cases}$$
 6)
$$\begin{cases} y = -2.5x, \\ 5x + 4y = 75; \end{cases}$$
 C)
$$\begin{cases} y = 1.5x, \\ 2y + 5x = 64. \end{cases}$$

14.5 a)
$$\begin{cases} 5x - 3y = 14, \\ 2x + y = 10; \end{cases}$$
 6)
$$\begin{cases} x + 5y = 35, \\ 3x + 2y = 27; \end{cases}$$

6)
$$\begin{cases} x + 5y = 35, \\ 3x + 2y = 27. \end{cases}$$

B)
$$\begin{cases} 7x - 2y = 15, \\ 2x + y = 9; \end{cases}$$

B)
$$\begin{cases} 7x - 2y = 15, \\ 2x + y = 9; \\ r) \begin{cases} x + 3y = 2, \\ 2x + 3y = 7. \end{cases}$$

$$\begin{cases} 5y - x = 6, \\ 3x - 4y = 4; \end{cases}$$

B)
$$\begin{cases} 3x + 4y = 55, \\ 7x - y = 56; \end{cases}$$

r)
$$\begin{cases} 4y - x = 11, \\ 6y - 2x = 13. \end{cases}$$

Решите систему уравнений:

14.7 O a)
$$\begin{cases} 4x - 3y = 12, \\ 3x + 4y = 34. \end{cases}$$

a)
$$\begin{cases} 4x - 3y = 12, \\ 3x + 4y = 34; \\ 6) \begin{cases} -5x + 2y = 20, \\ 2x - 5y = -8; \end{cases}$$

B)
$$\begin{cases} 2x - 3y = 12, \\ 3x + 2y = 5; \end{cases}$$

B)
$$\begin{cases} 2x - 3y = 12, \\ 3x + 2y = 5; \end{cases}$$
F)
$$\begin{cases} 5x - 4y = 5, \\ 2x - 3y = 9. \end{cases}$$

$$\begin{cases} 3x + 4y = 0, \\ 2x + 3y = 1. \end{cases}$$

B)
$$\begin{cases} 4x - 3y = 7, \\ 5x + 2y = 26; \end{cases}$$

r)
$$\begin{cases} 3x - 5y = 0, \\ 8y - 5x = -1. \end{cases}$$

$$\begin{cases} 2x + 5y = 25; \\ 5y - 6x = 2, \\ 8x - 3y = 1; \end{cases}$$

B)
$$\begin{cases} 5x - 2y = 48, \\ 2x + 3y = 23; \end{cases}$$

r)
$$\begin{cases} 4x - 3y = -1, \\ 10x - 4y = 1. \end{cases}$$

14.10 • a)
$$\begin{cases} 6x + 5y = 1, \\ 2x - 3y = 33; \end{cases}$$

$$\begin{cases} 5x + 6y = 4, \\ 3x + 5y = 1; \end{cases}$$

B)
$$\begin{cases} 4x - 5y = -2, \\ 3x + 2y = -13; \end{cases}$$

r)
$$\begin{cases} 3x - 7y = 1, \\ 2x + 3y = 16. \end{cases}$$

14.11 O a)
$$\begin{cases} 4(x-y) = -2, \\ 3x - 7y = -2, 5 - 2(x+y); \end{cases}$$

6)
$$\begin{cases} 2(x+y) = 8, \\ 14 - 3(x-y) = 5y - x; \end{cases}$$

B)
$$\begin{cases} 3(x+y) = 6, \\ 6+5(x-y) = 8x-2y; \end{cases}$$

r)
$$\begin{cases} 5(x-y) = 10, \\ 3x - 7y = 20 - (x+3y). \end{cases}$$

14.12 O a)
$$\begin{cases} 2 - 3x = 2(1 - y), \\ 4(x + y) = x - 1.5; \end{cases}$$

B)
$$\begin{cases} 2x - 3(2y+1) = 15, \\ 3(x+1) + 3y = 2y - 2; \end{cases}$$

6)
$$\begin{cases} 6x + 3 = 8x - 3(2y - 4), \\ 2(2x - 3y) - 4x = 2y - 8; \end{cases}$$

r)
$$\begin{cases} 4y + 20 = 2(3x - 4y) - 4, \\ 16 - (5x + 2y) = 3x - 2y. \end{cases}$$

14.13 O a)
$$\begin{cases} \frac{x}{2} + \frac{y}{3} = 3, \\ \frac{x}{3} + \frac{y}{2} = \frac{1}{3}; \end{cases}$$

B)
$$\begin{vmatrix} \frac{x}{3} - \frac{y}{2} = -4, \\ \frac{x}{2} + \frac{y}{4} = -2; \end{vmatrix}$$

6)
$$\left\{ \frac{x}{3} + \frac{y}{2} = 5, \right.$$

(a)
$$\begin{cases} 4x + 7y = 1, \\ \frac{x}{5} + \frac{y}{6} = -\frac{1}{2}. \end{cases}$$

14.14 O a)
$$\begin{cases} 6y - 5x - 1 = 0, \\ \frac{x - 1}{3} + \frac{y + 1}{2} = 10; \end{cases}$$

B)
$$\begin{cases} \frac{3x+2y}{5} + \frac{x-3y}{6} = 3, \\ 2x+7y+43 = 0; \end{cases}$$

6)
$$\begin{cases} \frac{x+2y}{5} + \frac{3x-y}{3} = 5, \\ 2x - 3y = -1; \end{cases}$$

r)
$$\begin{cases} 7x - 10y = 5, \\ \frac{4x + 1}{3} - \frac{5x - 3y}{4} = 3. \end{cases}$$

14.15 O a)
$$\begin{cases} \frac{5x-3+9y}{3} = \frac{2x+3y-2}{2}, \\ \frac{x-3y}{3} = \frac{2x-3y}{3}; \end{cases}$$

B)
$$\begin{cases} \frac{x+3-5y}{2} = \frac{3x-4y+3}{3}, \\ \frac{6+3x-y}{3} = \frac{12x-y}{4}; \end{cases}$$

$$\begin{cases} \frac{2x-y}{6} + \frac{2x+y}{9} = 3, \\ \frac{x+y}{2} - \frac{x-y}{4} = 4; \end{cases}$$

r)
$$\begin{cases} \frac{x+y}{8} + \frac{x-y}{6} = 5, \\ \frac{x+y}{4} + \frac{x-y}{5} = 10. \end{cases}$$

Найдите координаты точки пересечения прямых:

14.16 O a)
$$y = 10x + 30$$
 if $y = -12x + 272$;

б)
$$y = -18x + 25$$
 и $y = 15x + 14$;

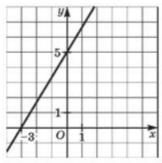
B)
$$y = 15x - 21$$
 H $y = 7x - 77$;

г)
$$y = -7x - 19$$
 и $y = 14x - 1$.

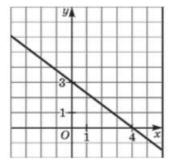
- 14.17 O a) y = 5x u 4x + y = 180; B) y = -1,4x u x y = 18; C) x 2y = 5 u 2x + y = 9; C) x 10y = 1 u 2x + 3y = 48.

- 14.18 Найдите абсциссу точки пересечения графиков двух линейных уравнений с двумя переменными:
 - a) 4x 3y = 12 if 3x + 4y = -24;
 - б) 5x + 2y = 20 и 2x 5y = 10;
 - B) 2x 3y = 12 M 3x + 2y = 6;
 - Γ) 5x 3y = 5 M 2x + 7y = 4.

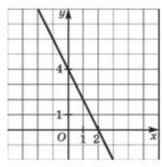
- 14.19 О Составьте уравнение прямой, проходящей через данные точки:

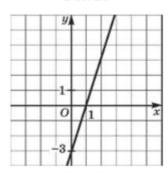

 - a) A(5; 0); B(0; 2); B) E(7; 0); F(0; -1);

 - 6) C(-6; 0); D(0; 4); r) L(-2; 0); K(0; -4).


14.20 O

- Составьте аналитическую модель линейной функции, график которой изображён:
 - а) на рис. 22; в) на рис. 24;


 - б) на рис. 23; г) на рис. 25.


Puc. 22

Puc. 24

Puc. 23

Puc. 25

- Составьте уравнение прямой, проходящей через начало координат и точку пересечения прямых y = 9x - 28 и y = 13x + 12.
- Решите задачу, используя для составления математической моде-14.22 O ли две переменные: В седьмых классах девочек в 1,3 раза больше, чем мальчиков.

Сколько всего учеников в седьмых классах, если девочек на 12 больше, чем мальчиков?

Решите задачу, используя для составления математической модели две переменные:

- Два числа в сумме дают 77. Найдите эти числа, если $\frac{2}{3}$ одного 14.23 числа составляют $\frac{4}{5}$ другого.
- Первое число составляет 25 % от второго. Найдите эти числа, 14.24 O если их сумма равна 52,5.
- Первое число составляет 87 % от второго. Найдите эти числа, 14.25 O если второе число больше первого на 3,9.
- Первое число составляет 124 % от второго. Найдите эти числа, 14.26 O если их сумма равна 112.

§ 15 МЕТОД АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ

Прочитайте п. 1 в § 15 учебника.

Решите систему уравнений методом алгебраического сложения:

- 15.1
- a) $\begin{cases} x y = 5, \\ x + y = 7; \end{cases}$ b) $\begin{cases} 2x + y = 11, \\ 3x y = 9; \end{cases}$ c) $\begin{cases} x + y = 9, \\ -x + y = -3; \end{cases}$ r) $\begin{cases} x 3y = 4, \\ -x + y = -8. \end{cases}$

15.2 a)
$$\begin{cases} 2x + 11y = 15, \\ 10x - 11y = 9; \end{cases}$$
6)
$$\begin{cases} 9y + 13x = 35, \\ 29y - 13x = 3; \end{cases}$$

$$\begin{cases} 9y + 13x = 35, \\ 60 & 12 \end{cases}$$

B)
$$\begin{cases} x - 6y = 17, \\ 5x + 6y = 13; \\ 9x - 7y = 19, \\ -9x - 4y = 25. \end{cases}$$

6)
$$\begin{cases} 9y + 13x = 35, \\ 29y - 13x = 3. \end{cases}$$

r)
$$\begin{cases} 9x - 7y = 19, \\ -9x - 4y = 25 \end{cases}$$

B)
$$\begin{cases} y - x = 9, \\ 7y - x = -3; \end{cases}$$

6)
$$\begin{cases} 4x - y = 3, \\ x - y = 6. \end{cases}$$

r)
$$\begin{cases} 5x + y = 6, \\ x + y = -10. \end{cases}$$

15.4 O a)
$$\begin{cases} 4x - 7y = 30, \\ 4x - 5y = 90; \end{cases}$$
6)
$$\begin{cases} -5x + 7y = 6, \\ 2x + 7y = 76; \end{cases}$$

B)
$$\begin{cases} 3x - 6y = 12, \\ 3x + 5y = 100; \end{cases}$$

6)
$$\begin{cases} -5x + 7y = 6, \\ 2x + 7y = 76. \end{cases}$$

B)
$$\begin{cases} 3x - 6y = 12, \\ 3x + 5y = 100; \end{cases}$$
r)
$$\begin{cases} -3x + 5y = -11, \\ 8x + 5y = 11. \end{cases}$$

Решите систему уравнений:

$$\begin{cases} 2x - 3y = 9, \\ x + 2y = 1; \end{cases}$$

6)
$$\begin{cases} 3x + y = 1, \\ 2x - 5y = -22; \end{cases}$$

r)
$$\begin{cases} 5x + y = 24, \\ 7x + 4y = 18. \end{cases}$$

15.6 O a)
$$\begin{cases} x + y = 4, \\ 4x - 5y = 7; \end{cases}$$
6)
$$\begin{cases} x - y = 6, \\ 5x - 2y = -3; \end{cases}$$

B)
$$\begin{cases} x - y = -3, \\ 2x + 7y = 3; \\ y + 4y = -2, \\ x + y = -8. \end{cases}$$

6)
$$\begin{cases} x - y = 6, \\ 5x - 2y = -2. \end{cases}$$

r)
$$\begin{cases} 9x + 4y = -2 \\ x + y = -8. \end{cases}$$

B)
$$\begin{cases} 3x + 8y = 13, \\ 5x - 16y = 7; \end{cases}$$

6)
$$\begin{cases} 5x + 2y = 1, \\ 1 = 1, \end{cases}$$

r)
$$\begin{cases} 10x + 15y = -45, \\ 2x - 3y = 33, \end{cases}$$

B)
$$\begin{cases} 3x + 3y = 20, \\ 2x - 4y = 21; \end{cases}$$

$$\begin{cases}
-3x + 4y = 24, \\
5x + 3y = -40;
\end{cases}$$

r)
$$\begin{cases} -5x + 3y = -15, \\ 2x + 7y = 47. \end{cases}$$

15.9 O a)
$$\begin{cases} 4x + 5y = 1, \\ 5x + 7y = 5; \end{cases}$$

B)
$$\begin{cases} 7x + 5y = -5, \\ 5x + 3y = 1; \end{cases}$$

$$\begin{cases} 3x - 5y = 25, \\ 4x - 2y = 25, \\ 2x - 2y = 25, \\ 3x - 2y =$$

6)
$$\begin{cases} 3x - 5y = 25, \\ 4x - 3y = 37; \end{cases}$$
 r)
$$\begin{cases} 4x - 3y = 12, \\ 3x - 4y = 30. \end{cases}$$

15.10 • a)
$$\begin{cases} 4x + 15y = -42, \\ 6x + 25y = -26 \end{cases}$$

a)
$$\begin{cases} 4x + 15y = -42, \\ -6x + 25y = -32; \end{cases}$$
 B)
$$\begin{cases} 12x - 35y = 25, \\ -8x - 15y = -55; \end{cases}$$

6)
$$\begin{cases} 9x + 8y = -53, \\ 1.5 & 10 \end{cases}$$

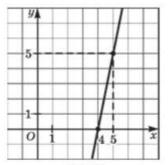
6)
$$\begin{cases} 9x + 8y = -53, \\ 15x + 12y = -27; \end{cases}$$
 r)
$$\begin{cases} 25x - 24y = -21, \\ 10x - 9y = 3. \end{cases}$$

15.11 O a)
$$\begin{cases} \frac{1}{2}x - \frac{1}{3}y = 1, \\ 6x - 5y = 3; \end{cases}$$

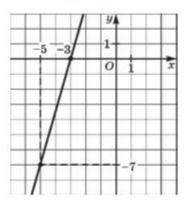
B)
$$\begin{cases} \frac{1}{4}x - \frac{1}{3}y = 4, \\ \frac{4}{5}x - 3y = 7; \end{cases}$$

6)
$$\begin{cases} \frac{1}{3}x + \frac{1}{5}y = 11, \\ \frac{3}{\pi}x - 2y = 8; \end{cases}$$

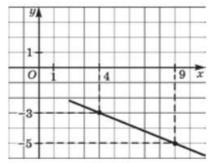
r)
$$\begin{cases} \frac{1}{5}x + \frac{1}{4}y = -1, \\ 2x - 3y = -54. \end{cases}$$

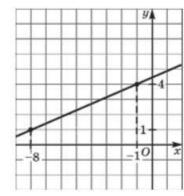

15.12 **o** a)
$$\begin{vmatrix} \frac{y+1}{3x-4} & = \frac{1}{2}, \\ \frac{5x+y}{3x-4} & = 1; \end{vmatrix}$$

$$\begin{cases} \frac{3x+10}{y+1} = \frac{1}{12}, \\ \frac{5x+y}{9x+3y} = \frac{4}{5}. \end{cases}$$

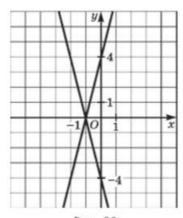

95

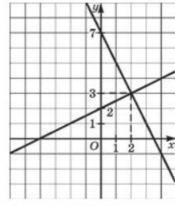
Прочитайте п. 2 в § 15 учебника.


- Составьте уравнение прямой, проходящей через заданные точки: 15.13
 - B) M(-3; -1); N(2; 5);a) A(2; 3); B(-1; 4); 6) C(-6; 7); D(4; 3); r) P(6; 2); Q(-1; -3).
- Составьте аналитическую модель линейной функции, график ко-15.14 торой изображён:
 - а) на рис. 26; в) на рис. 28;
 - б) на рис. 27; г) на рис. 29.

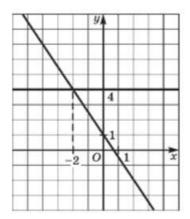

Puc. 26

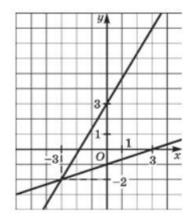
Puc. 28


Puc. 27


Puc. 29

Составьте аналитическую модель системы линейных уравнений, 15.15 геометрическая иллюстрация которой представлена:


- а) на рис. 30;
- б) на рис. 31;
- в) на рис. 32; г) на рис. 33.


Puc. 30

Puc. 31

Puc. 32

Puc. 33

15.16 При каком значении *р* график функции:

a)
$$y = px$$
;

$$6) y = px + 1$$

пройдёт через точку пересечения прямых 6x - y = 13 и 5x + y = 20?

15.17 При каких значениях а и b решением системы уравнений:

а)
$$\begin{cases} ax + by = 36, \\ ax - by = 8 \end{cases}$$
 является пара чисел (2; -1);

6)
$$\begin{cases} ax + by = 2a, \\ ax - by = 16 \end{cases}$$
 является пара чисел (-1; 2);

в)
$$\begin{cases} ax + by = 4, \\ ax - by = -24 \end{cases}$$
 является пара чисел (1; -2);

г)
$$\begin{cases} ax + by = 18, \\ ax - by = a + 2 \text{ является пара чисел (-2; 1)?} \end{cases}$$

15.18 При каких значениях a и b решением системы уравнений:

а)
$$\begin{cases} (a-10)x + by = 2b, \\ ax - (b+4)y = 2a - 20 \text{ является пара чисел (1; 1);} \end{cases}$$

5)
$$\begin{cases} (a+1)x - by = 2b, \\ ax + (b+1)y = 5a \text{ является пара чисел (-4; -6)?} \end{cases}$$

Решите систему уравнений:

15.19 a)
$$\begin{cases} (3a - 2b)(2a + 5b) = 0, \\ 5a - 4b + 2 = 0; \end{cases}$$

6)
$$\begin{cases} (a + 2b + 1)(3a - 4b - 2) = 0, \\ 5b - 2a - 8 = 0. \end{cases}$$

15.20 a)
$$\begin{cases} 3|x| - 2y = 7, \\ 2x + 3y = 2; \end{cases}$$
 6)
$$\begin{cases} 2x + 3|y| = 7, \\ 5x - 3y = 13. \end{cases}$$

- Найдите целочисленные значения переменных, которые являют-15.21 ся решениями двух и только двух из приведённых уравнений:
- 1) 3x 2y = 19, 2) 5x + y = 10, 3) 7x + 3y = 22.

§ 16 СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ КАК МАТЕМАТИЧЕСКИЕ МОДЕЛИ РЕАЛЬНЫХ СИТУАЦИЙ

- Найдите два числа, если известно, что утроенная разность этих 16.1 чисел на 6 больше их суммы, а удвоенная разность этих чисел на 9 больше их суммы.
- Если числитель дроби умножить на 2, а из знаменателя вычесть 2, 16.2 то получится 2. Если же из числителя вычесть 4, а знаменатель умножить на 4, то получится $\frac{1}{12}$. Найдите эту дробь.
- Если к числителю и знаменателю дроби прибавить по единице, то 16.3 получится $\frac{1}{2}$, а если из них вычесть по единице, то получится $\frac{1}{2}$. Найдите эту дробь.

ГЛАВА З. СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

- Одно число на 140 меньше другого; 60 % большего числа на 64 больше 70 % меньшего. Найдите эти числа.
- 16.5 О Известно, что 30 % числа a на 20 больше, чем 25% числа b, а 30 % числа b на 8 больше, чем 20 % числа a. Найдите числа a и b.
- 16.6 О Среднее арифметическое двух чисел равно 32,5. Найдите эти числа, если известно, что 30 % одного из них на 0,25 больше, чем 25 % другого.
- 16.7 О Полуразность двух чисел равна 14,9. Найдите эти числа, если известно, что 24 % первого числа на 0,6 меньше второго.
- 16.8 О Среднее арифметическое двух чисел равно 185. Если одно число разделить на другое, то в частном получится 2 и в остатке 40. Найдите эти числа.
- 16.9 О Разность двух чисел равна 52. Если первое число разделить на второе, то в частном получится 3 и в остатке 4. Найдите эти числа.
- 16.10 О Найдите число *B*, если известно, что оно составляет 24 % от числа *A* и на 7 больше числа *C*, составляющего 16 % от числа *A*.

Pассмотрите пример 2 в § 16 учебника.

- 16.11 О Сумма цифр двузначного числа равна 14. Если его цифры поменять местами, то полученное двузначное число будет на 18 меньше первоначального. Найдите исходное число.
- 16.12 О Сумма цифр двузначного числа равна 11. Если это число разделить на разность его цифр, то в частном получится 24 и в остатке 2. Найдите исходное число.
- 16.13 О Если двузначное число разделить на сумму его цифр, то в частном получится 6 и в остатке 3. Если же разделить его на сумму цифр, увеличенную на 2, то в частном получится 5 и в остатке 5. Найдите исходное число.
- 16.14 О Сумма цифр заданного двузначного числа равна 7. Если к каждой цифре прибавить по 2, то получится число, меньшее удвоенного заданного числа на 3. Какое число задано?

- Сумма двух натуральных чисел, из которых второе оканчивается цифрой 2, равна 1244. Если к первому числу приписать справа цифру 3, а во втором числе отбросить последнюю цифру, то полученные числа будут равны. Найдите исходные числа.
- Найдите сумму двух двузначных чисел, о которых известно следующее. Если к первому числу приписать справа второе число, то полученное четырёхзначное число при делении на второе заданное число даёт в частном 121. Если к первому числу приписать слева второе число, то полученное четырёхзначное число при делении на первое заданное число даёт в частном 84 и в остатке 6.
- 16.17 Найдите произведение двух двузначных чисел, о которых известно следующее. Если к первому числу приписать справа второе число, а затем цифру 0, то получится пятизначное число, которое при делении на второе заданное число даёт в частном 1381 и в остатке 15. Если к первому заданному числу приписать справа второе число, а затем составить новое четырёхзначное число, которое получается приписыванием к первому числу второго слева, то первое четырёхзначное число окажется больше второго четырёхзначного числа на 1287.

Рассмотрите пример 1 в § 16 учебника.

98

- Два тракториста вспахали вместе 678 га. Первый тракторист работал 8 дней, а второй 11 дней. Сколько гектаров вспахивал за день каждый тракторист, если первый тракторист за каждые 3 дня вспахивал на 22 га меньше, чем второй за 4 дня?
- Две бригады работали на уборке картофеля. В первый день одна бригада работала 2 ч, а вторая 3 ч, причём ими было собрано 23 ц картофеля. Во второй день первая бригада за 3 ч работы собрала на 2 ц больше, чем вторая за 2 ч. Сколько центнеров картофеля собирала каждая бригада за 1 ч работы?
- Зерно перевозили на двух автомашинах различной грузоподъёмности. В первый день было вывезено 27 т зерна, причём одна машина сделала 4 рейса, а другая 3 рейса. На следующий день вторая машина за 4 рейса перевезла на 11 т зерна больше, чем первая машина за 3 рейса. Сколько тонн зерна перевозили на каждой машине за один рейс?

ГЛАВА 3. СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

- Для перевозки руды из карьера были отправлены пятитонные и трёхтонные самосвалы. За 1 рейс пятитонные самосвалы перевозят руды на 18 т больше, чем трёхтонные. За рабочий день пятитонные самосвалы совершили 4 рейса, а трёхтонные 6 рейсов, и всего ими перевезено за день 192 т руды. Сколько самосвалов каждой грузоподъёмности перевозили руду?
- На рынке было закуплено 84 кг черешни и вишни, причём черешни куплено на 3 ящика меньше, чем вишни. Сколько ящиков черешни и вишни закуплено по отдельности, если в 1 ящике черешни 8 кг, а вишни 10 кг?
- Двое рабочих изготовили 162 детали. Первый работал 8 дней, а второй 15 дней. Сколько деталей изготовил каждый рабочий, если первый изготовил за 5 дней на 3 детали больше, чем второй за 7 дней?
- 16.24 О На двух полках находится 110 книг. Если со второй полки переставить половину книг на первую, то на первой окажется в 4 раза больше книг, чем останется на второй. Сколько книг на каждой полке?
- Для учащихся приобрели футбольные и волейбольные мячи, причём волейбольных в 5 раз больше, чем футбольных. На следующий год приобрели новую партию мячей, причём футбольных стало в 6 раз больше, чем было, волейбольных в 4 раза больше, чем было, а всего мячей стало 52. Сколько мячей закупили в первый год?
- Буратино положил в копилку 59 р. пятирублёвыми и двухрублёвыми ми монетами. В течение некоторого времени он докладывал туда деньги теми же монетами. Когда Буратино вскрыл копилку, он обнаружил, что пятирублёвых монет стало в 2 раза больше, чем было, а двухрублёвых в 3 раза больше, чем было, при этом денег пятирублёвыми монетами стало на 2 р. меньше, чем двухрублёвыми. Сколько монет каждого достоинства было в копилке первоначально?
- В магазин поступили учебники по физике и математике. Когда продали 50 % учебников по математике и 20 % учебников по физике, что составило в общей сложности 390 книг, учебников по математике осталось в 3 раза больше, чем по физике. Сколько учебников по математике и сколько по физике поступило в магазин?

- Два фрезеровщика, один из которых работал 5 дней, а другой 8 дней, изготовили 280 деталей. Затем, применив новую фрезу, первый повысил производительность труда на 62,5 %, а второй на 50 %, и уже за 4 дня совместной работы они изготовили 276 деталей. Сколько деталей изготовили бы они с новой фрезой, если бы, как и раньше, первый работал 5 дней, а второй 8 дней?
- 3а 2 кг конфет и 3 кг печенья заплатили 480 р. Сколько стоит 1 кг печенья и 1 кг конфет, если 1,5 кг конфет дешевле 4 кг печенья на 15 р.?
- 16.30 О В кассе было 136 монет пятирублёвого и двухрублёвого достоинства на сумму 428 р. Сколько монет каждого достоинства было в кассе?
- В автобусном парке, обслуживающем туристические маршруты, были автобусы марки «Икарус», по 44 пассажирских места в каждом, и марки «Мерседес», по 52 места. Всего в автобусном парке было 15 автобусов, которые одновременно могли перевозить 724 человека. Сколько автобусов каждой марки было в автопарке?
- 16.32 О В двух бидонах находится 70 л молока. Если из первого бидона перелить во второй 12,5 % молока, находящегося в первом бидоне, то молока в обоих бидонах станет поровну. Сколько литров молока в каждом бидоне?
- Двое рабочих изготовили вместе 1020 деталей. Первый работал 15 дней, а второй — 14 дней. Сколько деталей изготовлял каждый рабочий за один день, если первый за 3 дня изготовил на 60 деталей больше, чем второй за 2 дня?
- Расстояние между двумя пунктами по реке равно 80 км. Это расстояние лодка проплывает по течению реки за 4 ч, а против течения за 5 ч. Найдите собственную скорость лодки и скорость течения реки.
- Два пешехода отправились одновременно навстречу друг другу из пунктов М и N, расстояние между которыми 38 км. Через 4 ч расстояние между ними сократилось до 2 км, а ещё через 3 ч первому пешеходу осталось пройти до пункта N на 7 км меньше, чем второму до М. Найдите скорости пешеходов.

ГЛАВА 3. СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

- Из пунктов А и В, расстояние между которыми 30 км, навстречу друг другу одновременно вышли два пешехода и встретились через 3 ч 20 мин. Если бы первый вышел на 2 ч раньше второго, то встреча произошла бы через 2,5 ч после выхода второго. Найдите скорости пешеходов.
- 16.37 О Из пунктов А и В, расстояние между которыми 360 км, одновременно навстречу друг другу выехали два автомобиля и встретились через 2 ч 15 мин. Если бы первый автомобиль выехал на 24 мин раньше второго, то встреча произошла бы через 2 ч после выезда второго автомобиля. Найдите скорость каждого автомобиля.
- 16.38 О Катер за 4 ч по течению реки проплывает на 10 км меньше, чем за 6 ч против течения. Найдите собственную скорость катера, если плот по этой реке за 15 ч проплывает такое же расстояние, что и катер за 2 ч по озеру.
- Теплоход 120 км проходит за 5 ч против течения реки и 180 км за 6 ч по течению. Найдите скорость течения реки и собственную скорость теплохода.
- По течению реки лодка за 3 ч 20 мин проходит расстояние 30 км, а против течения за 4 ч расстояние 28 км. Какое расстояние по озеру пройдёт лодка за 1,5 ч?
- Путь по морю от города A до города B на 60 км короче, чем по шоссе. Теплоход проходит путь от A до B за 5 ч, а автомобиль — за 3 ч. Найдите скорости теплохода и автомобиля, если известно, что скорость теплохода составляет 40 % скорости автомобиля.
- Туристы сначала плыли на теплоходе по реке 2 ч, а затем шли 5 ч пешком до конечного пункта. Известно, что по реке они проплыли в 3 раза большее расстояние, чем прошли пешком. Найдите скорости туристов и теплохода, если известно, что скорость теплохода на 26 км/ч больше скорости туристов. Сколько времени понадобилось бы туристам, чтобы пройти весь путь пешком?
- На велогонке по гористой местности спортсмен должен был двигаться сначала с горы, потом в гору, а затем в обратном направлении. Путь туда велосипедист преодолел с горы за 20 мин, в гору за 45 мин, а путь обратно — с горы за 25 мин, в гору за 35 мин. Какова скорость велосипедиста в гору и с горы, если путь в одном направлении равен 17 км?

Путь от туристической базы до моря пролегал сначала в гору, а затем с горы. От турбазы до моря туристы шли в гору 45 мин и с горы 40 мин, а обратно — в гору 1 ч 15 мин, а с горы 24 мин. Найдите длину каждого участка пути, если путь в одну сторону равен 6,4 км.

Рассмотрите пример 3 в § 16 учебника.

- 16.45 По окружности, длина которой 100 см, движутся равномерно две точки. Они встречаются через каждые 4 с, двигаясь в противоположных направлениях, и через каждые 20 с, двигаясь в одном направлении. Найдите скорости этих точек.
- 16.46 О Ночью от берега, на котором был расположен лагерь туристов, унесло плот. Спустя 6,5 ч, утром, туристы на моторной лодке отправились за ним вдогонку и через 1,5 ч увидели плот на расстоянии 0,5 км впереди. Найдите скорость, с которой туристы догоняли плот, если на обратном пути они на этой моторной лодке преодолели 20 км за 2,5 ч.

Рассмотрите пример 4 в § 16 учебника.

- 16.47 О Имеются две отливки стали двух сортов, одна из которых содержит 5 %, а другая 10 % никеля. Сплавив их вместе, получили отливку, содержащую 8 % никеля. Найдите массу каждой отливки до переплавки, если известно, что вторая отливка содержала никеля на 4 т больше, чем первая.
- Имеется лом стали двух сортов с содержанием 5 и 40 % никеля. Сколько тонн стали каждого сорта нужно взять, чтобы, сплавив их, получить 140 т стали, в которой содержится 30 % никеля?
- 16.49 О Имеется лом стали двух сортов, первый содержит 10 % никеля, а второй 30 %. Сколько тонн стали каждого сорта нужно взять, чтобы получить 200 т стали с содержанием никеля 25 %.
- Имеются два слитка, представляющие собой сплавы цинка с медью. Масса первого слитка 2 кг, второго 3 кг. Их сплавили вместе с 5 кг третьего сплава цинка с медью, в котором цинка было 45 %; в полученном сплаве цинка оказалось 50 %. Если бы в первом сплаве процентное содержание цинка было таким, как во втором, а во

ГЛАВА З. СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

втором таким, как в первом, то, сплавив эти два слитка с 5 кг четвёртого сплава, в котором содержание цинка 60 %, получили бы сплав, в котором содержится 55 % цинка. Каково процентное содержание цинка в первом и во втором слитках?

- У двух братьев было по 30000 р. Они положили свои деньги в 16.51 банки А и В, первый соответственно, 20000 р. и 10000 р., а второй — по 15000 р. Через год, закрыв счета, первый брат получил на руки 32000 р., а второй — 32250 р. Каков годовой процент в банке А и каков — в банке В?
- Акционер купил два различных пакета акций. По итогам первого 16.52 года первый пакет дал прибыль 20 %, а второй — 15 %. В итоге акционер получил дивиденды в сумме 19000 р. По итогам второго года первый пакет дал прибыль 15 %, а второй — 20 %. Продав оба пакета по новым ценам, акционер получил на руки 129500 р. Какова была первоначальная цена обоих пакетов акций?

§ 17 НЕЧИСЛОВЫЕ РЯДЫ ДАННЫХ

- Даны пять точек: A(2; 1), B(-1; 1), C(0; 4), D(-2; 0), E(13; 10).
 - а) Выпишите поочерёдно названия точек, через которые проходят следующие прямые:
 - 1) x + y = 3;

- 6) x-y+4=0;
- 2) x-y-1=0;
- 7) x = 2;

3) 4x + y = 4;

- 8) x + 2 = 0;
- 4) x + y + 2 = 0:
- 9) y + x = 0;

5) y - 6 = 3x;

- 10) 10x = 13y.
- б) Заполните таблицу распределения прямых по точкам:

Точка	A	В	C	D	E
Какие прямые проходят через точку					
Сколько прямых проходит через точку					

- в) Найдите объём измерения.
- г) Через какую точку проходит меньше всего прямых?
- д) Через какие точки проходит наибольшее число прямых?

17.2 Однажды летом, в небывало жаркий день, на главной набережной приморского города N в одном из киосков «Мороженое» фирмы «Лёд и пламень» провели такой подсчёт:

Сорт мороженого	Сколько штук продано	Сорт мороженого	Сколько штуг продано	
№ 1	16	№ 9	4	
№ 2	10	№ 10	3	
№ 3	20	№ 11	13	
№ 4	32	№ 12	5	
№ 5	38	№ 13	5	
№ 6	21	№ 14	7	
№ 7	17	№ 15	2	
№ 8	7			

- а) Найдите объём измерения, т. е. подсчитайте, сколько всего мороженого было продано.
- б) Какова процентная доля дорогих сортов № 11-15?
- в) Какова процентная доля дешёвых сортов № 1-5?
- г) Найдите процентную долю моды измерения.
- 17.3 О (Продолжение задачи 17.2) В тот же день в другом киоске той же фирмы произвели подсчёт распределения такого же общего количества проданного мороженого. Однако результаты сразу перевели в проценты. Получилось вот что:

Сорт мороженого	Сколько продано, %	Сорт мороженого	Сколько продано, %	
№ 1	12	№ 9	2	
№ 2	5	M 10	2	
№ 3	7	№ 11	7	
№ 4	15	№ 12	2	
№ 5	14	№ 13	3	
№ 6	15	№ 14	4	
№ 7	8	№ 15	1	
№ 8	3			

- а) Сколько штук самого дорогого сорта сорта № 15 было продано?
- б) Сколько штук дешёвых сортов № 1-5 было продано?
- в) По результатам продаж двух киосков определите процентную долю трёх самых популярных сортов.

ГЛАВА 3. СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

г) Фирма заказывает партию из 10 000 штук мороженого для 50 киосков. Сколько примерно штук мороженого сорта № 5 разумно заказать?

17.4 О Даны системы уравнений:

$$\begin{cases} 3x - 6y + 5 = 0, \\ 2y = x - 7; \end{cases} \begin{cases} y = 6x + 7, \\ \frac{y - 7}{3} = 2x; \end{cases} \begin{cases} x + 5y - 7 = 0, \\ y = x + 7; \end{cases}$$

$$\begin{cases} 4x + 1,5y = 16, \\ y = 5 - \frac{8x}{3}; \end{cases} \begin{cases} 9x - 2y + 11 = 0, \\ y = x - 11. \end{cases}$$

Из данных систем уравнений случайным образом выбирают одну. Какова вероятность того, что выбранная система:

- а) не имеет решений;
- б) имеет бесконечно много решений;
- в) имеет хотя бы одно решение;
- г) имеет единственное решение?
- 17.5 О Для варианта № 1 контрольной работы случайным образом выбирают одну из данных в задаче 17.4 систем уравнений, а для варианта № 2 одну из оставшихся.
 - а) Сколько всего имеется вариантов такого выбора?
 - б) В скольких случаях система в варианте № 2 не будет иметь решений?
 - в) В скольких случаях каждая выбранная система имеет хотя бы одно решение?
 - г) В скольких случаях каждая выбранная система имеет единственное решение?

§ 18

ЧТО ТАКОЕ СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Запишите произведение в виде степени, назовите основание и показатель степени:

B)
$$0.5 \cdot 0.5$$
;

r)
$$8,4 \cdot 8,4 \cdot 8,4 \cdot 8,4 \cdot 8,4$$
.

a)
$$x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x$$
;

B)
$$z \cdot z \cdot z \cdot z \cdot z \cdot z$$
;

6)
$$y \cdot y \cdot y \cdot y \cdot y$$
;

r)
$$q \cdot q \cdot q$$
.

a)
$$(-4) \cdot (-4) \cdot (-4) \cdot (-4) \cdot (-4)$$
;

$$\text{ f) } \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right) \cdot \left(-\frac{2}{3}\right);$$

B)
$$(-2,5) \cdot (-2,5) \cdot (-2,5)$$
;

r)
$$\left(-5\frac{7}{8}\right)\cdot\left(-5\frac{7}{8}\right)$$
.

a)
$$(-c) \cdot (-c) \cdot (-c) \cdot (-c)$$
;

б)
$$(-d) \cdot (-d) \cdot (-d)$$
;

B)
$$(-r) \cdot (-r) \cdot (-r) \cdot (-r) \cdot (-r)$$
;

r)
$$(-s) \cdot (-s) \cdot (-s) \cdot (-s) \cdot (-s) \cdot (-s)$$
.

18.5 a)
$$(ab) \cdot (ab) \cdot (ab) \cdot (ab)$$
;

6)
$$(-pq) \cdot (-pq) \cdot (-pq)$$
;

B)
$$(mn) \cdot (mn) \cdot (mn) \cdot (mn) \cdot (mn)$$
;

$$\Gamma) (-xy) \cdot (-xy) \cdot (-xy) \cdot (-xy) \cdot (-xy) \cdot (-xy).$$

18.6 a)
$$(c-d) \cdot (c-d) \cdot (c-d)$$
;

6)
$$(z + t) \cdot (z + t)$$
;
B) $(p - q) \cdot (p - q) \cdot (p - q)$;

$$(x + y) \cdot (x + y)$$

Запишите выражение в виде произведения степеней, назовите основание и показатель каждой степени:

6)
$$0.7 \cdot 0.7 \cdot \left(-\frac{1}{2}\right) \cdot \left(-\frac{1}{2}\right)$$
;

r)
$$\frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot 0,1 \cdot 0,1$$
.

$$\text{ f) } (-0,3) \cdot \frac{3}{5} \cdot (-0,3) \cdot \frac{3}{5}; \\ \text{ r) } \left(-2\frac{1}{3}\right) \cdot 17, 8 \cdot 17, 8 \cdot \left(-2\frac{1}{3}\right) \cdot \left(-2\frac{1}{3}\right).$$

a)
$$(4pq)^2$$
; 6) $\left(-\frac{a}{b}\right)^4$; B) $(z-x)^3$; r) $\left(\frac{5c}{6d}\right)^5$.

Вычислите:

а)
$$2^n$$
, если $n=1, 4, 5;$ в) $\left(\frac{1}{3}\right)^n$, если $n=2, 3, 5;$

б)
$$\left(-\frac{1}{2}\right)^n$$
, если $n=2, 3, 6$; г) $(-5)^n$, если $n=1, 2, 3$.

а)
$$a^3$$
, если $a = -2$, 0, 3; в) c^5 , если $c = -1$, 0,2, 10;

б)
$$b^4$$
, если $b=-3$, $\frac{1}{3}$, 1; r) d^6 , если $d=-1$, $-\frac{1}{2}$, 3.

a) 125; 6)
$$\frac{1}{64}$$
; B) -0,216; r) $-\frac{343}{512}$.

18.13

Вычислите значение степени, если:

- а) основание равно 3, показатель равен 5;
- б) основание равно -0,5, показатель равен 4;
- в) основание равно $-\frac{3}{4}$, показатель равен 3;
- r) основание равно $1\frac{1}{7}$, показатель равен 2.

Запишите произведение в виде степени, назовите основание и показатель каждой степени:

18.14

- a) 6.6 ... 6
- 6) $(-7) \cdot (-7) \dots (-7)$; r) $b \cdot b \dots b$.

18.15

- a) $(xy) \cdot (xy) \dots (xy)$;
- B) $(m-n)\cdot(m-n)\ldots(m-n)$;
- б) $\underbrace{(-cd)\cdot(-cd)\,\ldots\,(-cd)}_{\text{m множителей}};$ г) $\underbrace{(t+v)\cdot(t+v)\,\ldots\,(t+v)}_{\text{л множителей}}.$

18.16

Упростите выражение:

- a) c.c... c . d.d ... d; В миожителей — в миожителей
- B) $\underbrace{(a-b)\cdot(a-b)\ldots(a-b)}_{m \text{ minokurtexeii}} \cdot (x-z);$
- r) $(p-q)\cdot(p-q)\cdot\underbrace{(x-y)\ldots(x-y)}_{m \text{ MNONEUTED B}}$.

18.17

Запишите на математическом языке:

- а) чему равна площадь квадрата S со стороной, равной a;
- б) чему равен объём куба V, если ребро равно a.

18.18

- а) Вычислите площадь квадрата, сторона которого равна:
 - 3 см, 7 дм, 1.5 см, $\frac{1}{4}$ дм.
- б) Вычислите объём куба, ребро которого равно:

10 m, 4 m, 0,6 m, $\frac{3}{7}$ m.

а) Вычислите сторону квадрата, если его площадь равна:

 16 cm^2 , 0.25 дм^2 , 100 мм^2 , $\frac{4}{9} \text{ м}^2$.

б) Вычислите ребро куба, если его объём равен: 27 мм³, 0,125 см³, 64 дм³, 8 м³.

18.20 a) Площадь грани куба равна 25 см². Найдите объём куба.

б) Объём куба равен 27 м³. Найдите площадь его грани.

Вычислите:

18.21 O a) $3 \cdot (-4)^2$; 6) $(-2)^5 \cdot 3$; B) $8^1 \cdot 7^1$; r) $(-0.5)^2 \cdot (-2)^2$.

18.22 O a) $\left(\frac{3}{4}\right)^2 \cdot 1\frac{1}{3}$; 6) $3^4 \cdot \left(-\frac{2}{3}\right)^3$; B) $1 : \left(-\frac{1}{3}\right)^3$; r) $\left(\frac{3}{5}\right)^2 \cdot 1\frac{2}{3}$.

18.23 • a) $\frac{0.2^4}{40}$; b) $\frac{1.8}{(0.3)^2}$; b) $\frac{1}{(-0.1)^3}$; r) $\frac{1.6}{(0.4)^2}$.

18.24 O a) $\left(2\frac{1}{5}\right)^2$; 6) $\left(-3\frac{1}{3}\right)^3$; B) $\left(-1\frac{2}{3}\right)^4$; r) $\left(5\frac{1}{4}\right)^2$.

[18.25] O a) $3 \cdot 2^4 + 2 \cdot 3^4$; B) $5 \cdot 3^3 + 3 \cdot 5^2$; 6) $7 \cdot 3^2 + 3 \cdot 7^2$; P) $7 \cdot 5^2 + 5 \cdot 7^2$.

18.26 • a) $7 \cdot 10^3 - 8 \cdot 10^2$; 6) $9^2 \cdot 3 + 100 \cdot (0.1)^2$.

18.27 O a) $\left(\frac{1}{9}\right)^2 \cdot 27 + (0,1)^4 \cdot 5000;$ 6) $100: 5^2 - \left(\frac{1}{9}\right)^2 \cdot 128.$

18.28 O a) $\left(2\frac{2}{3}\right)^3 - \left(1\frac{2}{3}\right)^3$; 6) $\left(-1\frac{1}{4}\right)^3 + \left(2\frac{1}{8}\right)^2$.

18.29 O a) $\frac{-2^4}{3} - \frac{2^4}{9}$; 6) $\frac{(-2)^2}{2^3} - \frac{5^2}{4}$; B) $\frac{(-2)^3}{5} - \frac{3}{2^2}$; r) $\frac{14}{3^3} - \frac{2^4}{(-3)^2}$.

18.30 О Найдите значение выражения; запишите ответ в виде десятичной дроби:

a)
$$\frac{\left(1\frac{1}{3}\right)^2 \cdot 0.5^3}{\left(\frac{2}{9}\right)^2}$$
; 6) $\frac{\left(4\frac{1}{2}\right)^3 \cdot 1.8^2}{\left(1\frac{4}{5}\right)^3}$.

18.31 О Вычислите:

a)
$$\frac{\left(-1\frac{1}{2}\right)^3 \cdot \left(2\frac{2}{3}\right)^2}{\left(-1\frac{1}{2}\right)^2};$$
 6) $\frac{\left(\frac{12}{25}\right)^3 \cdot \left(-1\frac{2}{3}\right)^2}{\left(-\frac{1}{5}\right)^2}.$

- 18.32 О Представьте в виде произведения степеней простых чисел число: a) 8000; б) 50 625.
- а) Запишите на математическом языке, чему равна площадь S полной поверхности куба, если его ребро равно a.
 б) Вычислите площаль полной поверхности куба, ребро которого
 - б) Вычислите площадь полной поверхности куба, ребро которого равно 7 см.
- 18.34 О а) Площадь поверхности куба равна 384 дм². Вычислите ребро и объём куба.
 - б) Объём куба равен 125 см³. Вычислите ребро и площадь поверхности куба.
- 18.35 О Сколько рулонов обоев потребуется для того, чтобы оклеить стены квадратной комнаты, высота которой равна 3 м, а площадь пола 9 м², если одним рулоном можно оклеить 7,2 м²?
- 18.36 О Сколько нужно килограммов краски, чтобы покрасить пол в квадратной комнате, длина каждой стены которой 4 м, если на покраску 1 м² нужно 200 г краски?
- 18.37 О Сколько литров воды потребуется, чтобы наполнить аквариум, имеющий форму куба, ребро которого равно 40 см?
- 18.38 Сравните значения выражений: а) 3² · 3¹ и 3²⁺¹; в) 2⁴ · 2⁵ и 5
 - a) $3^2 \cdot 3^1 \text{ is } 3^{2+1};$ B) $2^4 \cdot 2^5 \text{ is } 2^{4+5};$ 6) $4^2 \cdot 4^2 \text{ is } 4^{2+2};$ F) $5^2 \cdot 5^3 \text{ is } 5^{2+3}.$
- Тами Сравните числа a и b:

 a) $a = (1,215 \cdot 234,5 \cdot 32,78)^6$, $b = (2,345 \cdot 327,8 \cdot 12,15)^7$;

 b) $a = (0,233 \cdot 0,017 \cdot 0,004)^{10}$, $b = (0,4 \cdot 0,17 \cdot 0,000233)^{11}$.
- 18.40 Найдите натуральное число a, если известно, что из трёх представленных ниже утверждений два верные, а одно неверное:
 - 1) а одно из чисел 11, 12, 13, 16;
 - 2) последняя цифра числа a^{15} равна 6;
 - 3) при делении числа a^{25} на 10 в остатке получается 5.

§ 19

ТАБЛИЦА ОСНОВНЫХ СТЕПЕНЕЙ

Заполните таблицу степеней: 19.1

n	1	2	3	4	5	6
3"						
5"					> <	\sim
7"					><	$\overline{}$

Вычислите:

a)
$$1^5$$
; b) $(-1)^6$; b) $(-1)^3$; r) 1^7 .

$$(-1)^3$$

B)
$$(-1)^5 \cdot 1^6$$

a)
$$0^{101}$$
; 6) $1^{15} \cdot 0^2$; B) $(-1)^5 \cdot 1^6$; F) $1^7 \cdot (-1)^4 \cdot 0^3 \cdot 1^9$.

a)
$$(-1)^{10} + 0^{12} + 1^{45}$$
; B) $0^{12} + 1^{41} + (-1)^{11}$;

$$6) (-1)^6 + (-1)^7 - 0^8;$$

6)
$$(-1)^6 + (-1)^7 - 0^8$$
; r) $0^{502} - 1^{14} + 1^{13} + (-1)^2$.

19.5 a)
$$(-1)^4 + (-1)^3 + (-1)^2 + (-1)$$
;

$$6) (-1)^7 + 1^8 + 0^{15} + 1^{19} + (-1)^4$$

B)
$$(-1)^2 - (-1)^3 - (-1)^4 - (-1)^5$$
;

r)
$$(-1)^{12} + 0^1 - 1^{24} + 0^3 - (-1)^5$$
.

Запишите в виде степени числа 10: 19.7

- a) 1000000000; B) 1000000;
- б) 10;

г) 100...0. и пулей

Представьте заданное число в виде произведения степеней простых чисел:

- 19.8
- a) 288; b) 432; b) 600; r) 784.

- 19.9

- а) 3969; б) 64800; в) 21600; г) 19360.

19.10

- а) Назовите числа, квадрат которых равен 1, 9, 64, 121.
- б) Назовите числа, квадрат которых равен 0,04, 1,44, $\frac{25}{26}$, $2\frac{2}{40}$.
- в) Назовите числа, четвёртая степень которых равна 1, 16, 81, 625.
- г) Назовите числа, четвёртая степень которых равна 0,0001, $0,0016, \frac{1}{91}, \frac{256}{925}$

19.11

- а) Назовите число, куб которого равен 1, -8, 125, -343.
- б) Назовите число, куб которого равен 0,027, -0,216, $\frac{1}{64}$, $-\frac{343}{512}$.
- в) Назовите число, пятая степень которого равна -1, -32, 243, 100000.
- г) Назовите число, пятая степень которого равна 0,03125, $-0,00243, \frac{1}{32}, -7\frac{19}{32}.$

Вычислите:

19.12

- a) $(-2)^5$; 6) $(-3)^4$; b) $(-0,5)^3$; r) $\left(-\frac{1}{4}\right)^2$.

19.13

- a) $(-2.5)^2 + 1.5^2$; B) $(-0.5)^3 + (-0.4)^2$;
- 6) $\left(-\frac{2}{3}\right)^4 \left(\frac{2}{9}\right)^2$; r) $\left(-\frac{1}{6}\right)^2 \left(-\frac{1}{3}\right)^3$.

Вместо многоточия поставьте нужный знак неравенства:

19.14

- a) $a^2 \dots 0$; B) $(x+5)^2 \dots 0$; 5) $-a^2 \dots 0$; r) $-3(x-7)^2 \dots 0$.

19.15

- a) $x^2 + y^2 \dots 0$; b) $5(a^2 + b^2) \dots 0$; c) $(a + 51)^2 + (b^2 13)^2 \dots 0$; r) $-94(x + y)^2 \dots 0$.

19.16

- Используя таблицу степеней однозначных чисел, найдите b, если:
- a) $b^3 = 216$; 6) $b^5 = -32$; B) $b^7 = 128$;
- r) $b^3 = -343$.

19.17

Используя таблицу степеней простых однозначных чисел, найдите т, если:

- a) $2^m = 512$:
- б) $5^m = 625$; в) $7^m = 343$; г) $3^m = 729$.

Hайдите x, если:

19.18

- a) $x^4 = 16$; b) $x^2 = 25$; b) $x^4 = 81$; r) $x^6 = 64$.

19.19

- a) $2x^3 = -250$; b) $2x^4 = 162$; b) $5x^5 = 160$; r) $3x^6 = 192$.

19.20 О Запишите число, представленное суммой разрядных слагаемых:

- a) $3 \cdot 10^5 + 4 \cdot 10^4 + 7 \cdot 10^3 + 2 \cdot 10^2 + 8 \cdot 10 + 4$;
- 6) $8 \cdot 10^6 + 9 \cdot 10^3 + 5$:
- B) $1 \cdot 10^4 + 1 \cdot 10^2 + 1$:
- r) $3 \cdot 10^5 + 5 \cdot 10^3 + 4 \cdot 10^2 + 8$.

19.21 О Запишите число в виде суммы разрядных слагаемых:

- a) 17285;
- б) 213 149;
- в) 1495643;
- г) 75003400.

19.22 • Найдите значения выражений:

- a) a^2 , $(-a)^2$, $-a^2$ при a = 1, a = -1, a = 0, a = 10;
- б) $c^2 + (-c)^3 + c^4$ при c = 1, c = 0, c = 10, c = -1;
- в) b^4 , $(-b)^5$, $-b^5$ при b=1, b=0, b=-1, b=10;
- r) $d^4 d^2 + d + 1$ при d = -1, d = 0, d = 1, d = 10.

19.23 Укажите, какое из чисел больше:

- а) $(-17,2)^2$ или $(-17,2)^3$; в) $(-0,3)^3$ или $(-0,3)^6$;
- б) $\left(-\frac{3}{5}\right)^4$ или $\left(\frac{3}{5}\right)^4$; г) $\left(-\frac{1}{5}\right)^2$ или $\left(-\frac{1}{5}\right)^4$.

19.24 О Не производя вычислений, расположите в порядке возрастания следующие числа:

- a) $(-0,4)^3$, $(-1,5)^2$, $\left(\frac{1}{7}\right)^3$, $(-7)^3$;
- 6) $\left(-1\frac{1}{3}\right)^3$, $(-1,8)^2$, $\left(-\frac{3}{7}\right)^3$, $(-2,1)^2$;
- B) $(-1,5)^2$, $(0,8)^3$, $(-1,1)^2$, $\left(-\frac{2}{3}\right)^3$;
- r) $\left(-\frac{3}{4}\right)^3$, $\left(-\frac{2}{5}\right)^2$, $0,3^2$, $(-1,2)^2$.

19.25 О Вычислите:

- a) $(-1) + (-1)^2 + (-1)^3 + (-1)^4 + ... + (-1)^{2008}$;
- 6) $(-1) + (-1)^2 + (-1)^3 + (-1)^4 + ... + (-1)^{2009}$.

19.26 Расположите числа в порядке возрастания:

- a) $a = (-1,5)^3$, $b = (-0,5)^2$, $c = -\left(\frac{2}{3}\right)^2$, $d = 1,2^8$;
- 6) $a = (-2,4)^3$, $b = -\left(\frac{7}{9}\right)^2$, $c = \left(-\frac{3}{4}\right)^3$, $d = 2,3^3$.

a)
$$2^n = 1024$$
; $3^k = 81$; 6) $7^n = 49$; $5^k = 625$.

5)
$$7^n = 49$$
; $5^k = 625$.

Решите уравнение:

19.28 **(a)** a)
$$x^5 = 32$$
; (b) $-2x^3 = 250$; (c) $x^3 = 216$; (c) $5x^5 = -160$.

6)
$$-2x^3 = 250$$
:

$$x^3 = 216$$
:

r)
$$5x^5 = -160$$
.

19.29 **(a)** a)
$$x^2 = 1$$
; (b) $3x^4 = 48$; (c) $x^6 = 64$; (d) $2x^4 = 162$.

6)
$$3x^4 = 48$$
:

B)
$$x^6 = 64$$
;

r)
$$2x^4 = 162$$
.

19.30 **a**)
$$x^3 + 1 = 0$$
; **b**) $x^5 - 20 = 12$;

6)
$$3x^5 + 100 = 4$$
; r) $(3x)^3 - 25 = 100$.

B)
$$x^5 - 20 = 12$$

19.31 a)
$$2^{2x} = 128$$
; b) $3^{x-3} = 243$; b) $5^{\frac{x}{2}} = 125$; r) $2^{2-3x} = 256$.

$$\frac{x}{\sqrt{2}}$$

r)
$$2^{2-3x} = 256$$
.

19.32 a)
$$2^x = 128$$
; b) $5^{x-4} = 125$; b) $3^x = 243$; r) $6^{x+1} = 216$.

б)
$$5^{x-4} = 125$$
:

B)
$$3^x = 243$$
;

$$\Gamma$$
) $6^{x+1} = 216$

$$6) \ 3^{2x-1} = 27$$

a)
$$7^{3x} = 343$$
; 6) $3^{2x-1} = 27$; B) $2^{5x} = 1024$; r) $5^{3x+4} = 625$.

19.34 a)
$$(x + 3)^3 = 1$$
; b) $(x - 1)^5 = 32$; c) $(5x + 4)^7 = -1$.

B)
$$(x - 1)$$

$$(x-1)^{\circ}=32;$$

6)
$$(3x-5)^4=81$$
;

a)
$$(x+1)^8 = 256$$
; B) $(x-2)^6 = 729$; 6) $(3x-5)^4 = 81$; P) $(7x-2)^4 = 625$.

19.36 a)
$$2^{x^2+1} = 1024$$
; b) $3^{x^2-10} = 729$.

$$6) \ 3^{x^2-10} = 729.$$

19.35

520 СВОЙСТВА СТЕПЕНИ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Прочитайте п. 1 в § 20 учебника.

Представьте произведение в виде степени:

20.1 a)
$$x^2 \cdot x^3$$
;

a)
$$x^2 \cdot x^3$$
; 6) $y^6 \cdot y^4$; B) $z^5 \cdot z^{12}$; r) $t^{10} \cdot t^6$.

B)
$$z^5 \cdot z^{12}$$
;

20.2 a)
$$a^5 \cdot a$$
; b) $b \cdot b^6$; b) $c^7 \cdot c$; r) $d^9 \cdot d$.

20.3 a)
$$s^3 \cdot s^5 \cdot s^8$$

a)
$$s^3 \cdot s^5 \cdot s^8$$
; 6) $m^3 \cdot m^5 \cdot m^2$; B) $r^4 \cdot r^{12} \cdot r^{51}$; r) $n^4 \cdot n \cdot n^{11}$.

$$\Gamma$$
) $n^4 \cdot n \cdot n^{11}$.

a) $u^{15} \cdot u^{23} \cdot u \cdot u^{7}$: 20.4

B) $p^3 \cdot p^9 \cdot p^4 \cdot p$:

б) r7 · r10 · r11 · r39.

r) $a^{13} \cdot a^8 \cdot a^7 \cdot a^{18}$.

a) $(a-b)^3 \cdot (a-b)^2$; 20.5

B) $(q + r)^3 \cdot (q + r)^7$:

6) $(c+d)^7 \cdot (c+d)^9$:

r) $(m-n)^5 \cdot (m-n)^3$.

a) $(ax)^5 \cdot (ax)^7 \cdot (ax)$; B) $(cd)^8 \cdot (cd)^8 \cdot (cd)$; |20.6|

δ) $(-by)^2 \cdot (-by)^3 \cdot (-by)^8$; r) $(-pq)^3 \cdot (-pq) \cdot (pq)^6$.

Представьте выражение x^{25} в виде произведения двух степеней 20.7 с одинаковыми основаниями так, чтобы одна из степеней была равна:

a) x^{7} ;

б) x⁹; в) x; г) x²⁴.

Замените символ * степенью с основанием г так, чтобы выполнялось равенство:

a) $r^3 \cdot * = r^{11}$; 20.8

B) $r^{13} \cdot * \cdot r^{18} = r^{43}$

 $6) * \cdot r^{14} = r^{15}$

r) * $r^{21} \cdot r^{11} = r^{40}$.

a) $r^{12} \cdot * \cdot r^3 \cdot * = r^{26}$; B) $* \cdot r^7 \cdot * \cdot r^9 \cdot r^{13} = r^{48}$; 20.9

6) $r^{44} \cdot * \cdot r \cdot * = r^{51}$; r) $r \cdot r^{14} \cdot * \cdot r^{20} \cdot * = r^{72}$.

Вычислите: 20.10

a) $2^5 \cdot 2^4$; 6) $3^3 \cdot 3^2$; B) $7^2 \cdot 7$; r) $9 \cdot 9^2$.

Запишите в виде степени с основанием 2: 20.11

a) 4 · 2; b) 32 · 8; b) 64 · 512; r) 16 · 32.

Запишите в виде степени с основанием 5: 20.12

a) $5 \cdot 25$; b) $5^3 \cdot 625$; b) $5^4 \cdot 125$; r) $5^9 \cdot 3125$.

Определите знак числа а: 20.13

a) $a = (-13)^9 \cdot (-13)^8$; B) $a = (-28)^2 \cdot (-28)^6$; 6) $a = (-17)^{17} \cdot (-17)^{71}$; $r) a = (-43)^{41} \cdot (-43)^{14}$.

Решите уравнение: 20.14

a) $x \cdot 7^3 = 7^5$; 6) $12^2 \cdot x = 12^3$; B) $4^6 \cdot x = 4^8$; r) $x \cdot 5^6 = 5^9$.

Прочитайте п. 2 в § 20 учебника.

Представьте частное в виде степени:

20.15

a) $x^7: x^4$; b) $y^{16}: y^{12}$; b) $z^{13}: z$; c) $m^{28}: m^{27}$.

a)
$$a^{12}: a^{10}: a;$$
 B) $c^3: c: c;$ 6) $b^{45}: b^{15}: b^{29};$ P) $d^{43}: d^{14}: d^5.$

B)
$$c^3 : c : c$$
:

B)
$$c^{\circ}:c:c$$

a)
$$(a-b)^3:(a-b)^2$$
;

6)
$$(z+r)^{13}:(z+r)^8:(z+r)^8$$

B)
$$(c+d)^8:(c+d)^5$$
;

r)
$$(m-n)^{42}$$
: $(m-n)^{12}$: $(m-n)^{29}$.

Вычислите:

a)
$$10^{13}:10^8$$

a)
$$10^{13}:10^8;$$
 B) $(-324)^3:(-324)^2;$ 6) $12^{17}:12^{16};$ r) $(0,751)^{27}:(0,751)^{26}.$

a)
$$\frac{7^8}{7^5}$$

$$6) \frac{0.6^7}{0.6^5}$$

B)
$$\frac{(-0,2)^6}{(-0,2)^2}$$
;

a)
$$\frac{7^8}{7^5}$$
; 6) $\frac{0.6^7}{0.6^5}$; B) $\frac{(-0.2)^6}{(-0.2)^2}$; r) $\frac{\left(1\frac{1}{3}\right)^4}{\left(1\frac{1}{2}\right)^3}$.

a)
$$\left(1\frac{1}{3}\right)^{18} : \left(1\frac{1}{3}\right)^{17}$$

20.20 a)
$$\left(1\frac{1}{3}\right)^{18} : \left(1\frac{1}{3}\right)^{17};$$
 b) $\left(3\frac{2}{9}\right)^{23} : \left(3\frac{2}{9}\right)^{21};$

6)
$$\left(-2\frac{1}{7}\right)^6:\left(-2\frac{1}{7}\right)^4;$$

6)
$$\left(-2\frac{1}{7}\right)^6 : \left(-2\frac{1}{7}\right)^4$$
; r) $\left(-1\frac{7}{8}\right)^{15} : \left(-1\frac{7}{8}\right)^{14}$.

a)
$$\frac{7^3 \cdot 7^{12}}{7^{14}}$$

a)
$$\frac{7^3 \cdot 7^{12}}{7^{14}}$$
; 6) $\frac{10^{15} \cdot 10^7}{10^{19}}$; b) $\frac{15 \cdot 15^{13}}{15^{12}}$; r) $\frac{43^{12}}{42^6 \cdot 42^5}$.

B)
$$\frac{15 \cdot 15^{13}}{15^{12}}$$
;

a)
$$\frac{(0,3)^3 \cdot (0,3)^{12}}{(0,3)^{13}}$$

a)
$$\frac{(0,3)^3 \cdot (0,3)^{12}}{(0,3)^{13}}$$
; B) $\frac{(0,09)^5 \cdot (0,09)^4}{(0,09)^7}$;

$$6) \frac{\left(\frac{1}{8}\right)}{1}$$

6)
$$\frac{\left(\frac{7}{8}\right)^{16} \cdot \frac{7}{8}}{\left(\frac{7}{2}\right)^{15}};$$
 r) $\frac{\left(\frac{1}{3}\right)^3 \cdot \left(\frac{1}{3}\right)^2}{\frac{1}{2}}.$

20.23

Каким должно быть натуральное число n, чтобы выполнялось равенство:

- a) 128^n : $128^{56} = 128^{42}$; B) 395^n : $395 = 395^9$;
- 6) $216^3: 216^n = 216$; r) $548^4: 548^n = 548^3$.

20.24

Решите уравнение: a) $x: 2^5 = 2^3$; 6) $3^6: x = 3^4$; b) $x: 5^2 = 5$; c) $7^7: x = 7^4$.

20.25 Замените символ * степенью с основанием х так, чтобы выполнялось равенство:

- a) *: x^{10} : * = x^{40} ; B) x^{45} : *: x^{15} · * = x; 6) x^{44} · * · x : * = x^{51} ; P) *: *: $x = x^{73}$.

Используя правила умножения и деления степеней, упростите 20.26 выражение:

- a) $\frac{x^5 \cdot x^8}{x^3}$; 6) $\frac{y^7 \cdot y^9}{y^5}$; B) $\frac{c^{12} \cdot c^{10}}{c^{21}}$; r) $\frac{d^{18} \cdot d^{12}}{d^{15}}$.

Запишите в виде степени с основанием х: 20.27

- a) $(x^3)^2$;
- б) (x5)6;
- B) $(x^7)^{12}$;
- Γ) $(x^{10})^{13}$.

Представьте 2⁴⁰ в виде степени с основанием: 20.28

- a) 2⁸;
- б) 2¹⁰:
- B) 220:
- r) 24.

Запишите в виде степени с показателем 3: 20.29

- a) m18;
- б) n48;
- B) a54;
- r) b21.

20.30 Вычислите:

- a) (73)2;
- б) (3³)²; в) (4²)³; г) (2²)⁵.

Замените символ * таким выражением, чтобы выполнялось ра-20.31 венство:

- a) $(*)^5 = a^{30}$; 6) $(z^*)^3 = z^{12}$; b) $(*)^7 = b^{14}$; r) $(p^{12})^* = p^{24}$.

20.32 Известно, что $x^2 = y$. Чему равно:

- a) x6;
- б) x^{12} ;
- B) x20;
- r) x40?

Вычислите:

20.33 a) $\frac{2^6 \cdot (2^3)^5}{2^{18}}$; **b**) $\frac{(3^5)^2}{2^3 \cdot 0}$; **c**) $\frac{(5^6)^3 \cdot 5^8}{5^{22}}$; **d**) $\frac{4^7 \cdot 16}{(4^2)^4}$.

20.34 a) $\frac{5^6 \cdot 125}{25^4}$; **b)** $\frac{3^{11} \cdot 27}{9^6}$; **c)** $\frac{16^6}{4^7 \cdot 64}$.

Упростите выражение: 20.35

- a) $(a^3)^6 \cdot a^4$; b) $b^5 \cdot (b^3)^4$; b) $c^6 \cdot (c^2)^3$; r) $(d^8)^4 \cdot d^{23}$.

Используя правила умножения и деления степеней, упростите 20.36 выражение:

a)
$$\frac{a^3 \cdot a^5 : a^6}{a^7 \cdot a^8 : a^{14}}$$
;

B)
$$\frac{b^{13} \cdot b^{12} : b^3}{b^{20} \cdot b^4 : b^3}$$
;

6)
$$\frac{z^3 \cdot z^{17}}{z^{19}} \cdot \frac{q^{43} \cdot q^2}{z^{44}}$$
;

6)
$$\frac{z^3 \cdot z^{17}}{z^{19}} \cdot \frac{q^{43} \cdot q^2}{q^{44}}$$
; Γ) $\frac{m^{79} \cdot m^4}{m^{99}} \cdot \frac{m^{63} \cdot m^{57}}{m^{96}}$.

Упростите выражение:

20.37 a
$$(x^5)^4 \cdot (x^6)^7$$
; **b** $(y^8)^2 \cdot (y^{12})^3$;

5)
$$(u^8)^2 \cdot (u^{12})^3$$

B)
$$(z^{13})^3 \cdot (z^5)^9$$
:

B)
$$(z^{13})^3 \cdot (z^5)^9$$
; r) $(t^{25})^2 \cdot (t^{10})^4$.

$$6) (p^3)^4 : p^{10}$$

B)
$$(u^{14})^3:u^{20}$$
:

a)
$$\frac{(x^3)^4 \cdot x^7}{x^{15}}$$

B)
$$\frac{(c^3)^5 \cdot c^5}{(c^6)^3}$$

r)
$$\frac{(d^2)^3 \cdot d^{15}}{(d^4)^3}$$

Возведите в степень: 20.40 O

- a) $(x^3)^n$; b) $(-a^4)^{2n}$; b) $(y^n)^5$; r) $(-b^3)^{6n}$.

20.41 Решите уравнение:

- a) $\frac{(x^{8})^4 \cdot (x^5)^9}{(x^{15})^4 \cdot (x^4)^4} = 5;$ B) $\frac{(x^{45})^2 \cdot (x^{40})^2}{(x^5)^4 \cdot x^{17}} = -1;$
- 6) $\frac{x^{17} \cdot x^{23}}{(x^5)^3 \cdot x^5 \cdot (x^2)^3} = -243;$ r) $\frac{(x^5)^2 \cdot (x^4)^7 \cdot x}{x^{130} \cdot (x^{25})^4} = 512.$

 вместо символа * поставьте степень с основанием а так, чтобы 20.42 O выполнялось равенство

$$\frac{a^3 \cdot (-a^2)^4 \cdot *}{a^5} = a^{12}.$$

б) Вместо символа * поставьте степень с основанием b так, чтобы выполнялось верное равенство

$$\frac{(-b^2)^3 \cdot b^2 \cdot b^4}{*} = -b^9.$$

Рассмотрите пример 5 в § 20 учебника.

0 Сравните числа a и b: 20.43

- a) $a = 27^5$, $b = 81^4$;
- B) $a = 125^5$, $b = 625^3$:
- б) $a = \left(\frac{1}{81}\right)^4$, $b = \left(\frac{1}{32}\right)^2$; r) $a = 0.04^{10}$, $b = 0.08^7$.

Рассмотрите пример 6 в § 20 учебника.

20.44

Сравните числа: a) $a = 2^{186}$ и $b = 3^{124}$; б) $a = 3^{150}$ и $b = 5^{100}$.

118

Рассмотрите пример 7 в § 20 учебника.

20.45

Докажите, что $(34^{2015} + 11^{2016})$: 5.

119

Рассмотрите пример 8 в § 20 учебника.

20.46

Какое наибольшее число можно записать четырьмя тройками?

§ 21

УМНОЖЕНИЕ И ДЕЛЕНИЕ СТЕПЕНЕЙ С ОДИНАКОВЫМИ ПОКАЗАТЕЛЯМИ

Представьте выражение в виде произведения степеней:

21.1

a) $(2a)^4$;

б) $(3b)^5$; B) $(6n)^3$; r) $(8n)^2$.

21.2

a) $(-2p)^3$; b) $(-5q)^4$; b) $(-7c)^2$; r) $(-3d)^5$.

21.3

a) (mn)6;

б) (ab)⁴; в) (pq)³; г) (cd)¹⁰.

21.4

a) $(-ac)^{17}$;

б) $(-am)^8$;

в) (-rs)³;

r) $(-xy)^{12}$.

21.5

a) $(xy^3)^2$; 6) $(a^2bc^3)^4$; B) $(p^3cd^6)^{18}$; r) $(u^5v^4t^7)^9$.

21.6

a) $(3p^2r^8)^5$; b) $(6a^5bx^3)^3$; b) $(10a^2b^5)^4$; c) $(4r^5q^8p^9)^2$.

Представьте выражение в виде степени произведения:

21.7

a) $36a^2$; b) $49b^2$; b) $81c^2$; r) $64d^2$.

21.8

a) $a^2b^2c^2$; 6) $x^3y^3z^3$; B) $m^5n^5s^5$; r) $p^{12}q^{12}r^{12}$.

21.9

a) $16x^4y^4z^4$; b) $125c^3d^3z^3$; b) $81m^2p^2q^2$; c) $32r^5s^5q^5$.

Запишите выражение в виде степени с показателем 2:

a)
$$a^2b^{10}$$
; 6) x^8y^{12} ;

B)
$$x^2y^4z^{24}$$
;

B)
$$x^2y^4z^{24}$$
; r) $p^8q^{10}z^{30}$.

6)
$$16q^{18}r^{34}$$

б)
$$16q^{18}r^{34}$$
; в) $81c^8d^{16}f^{28}$; г) $121m^{12}n^{16}r^{54}$.

21.12

Найдите наиболее рациональным способом значение выражения:

B)
$$0.6^6 \cdot 5^6$$
;

6)
$$\left(\frac{2}{2}\right)^7 \cdot 1,5^7$$
;

6)
$$\left(\frac{2}{3}\right)^7 \cdot 1,5^7;$$
 r) $\left(\frac{35}{24}\right)^3 \cdot \left(\frac{6}{7}\right)^3 \cdot \left(\frac{2}{5}\right)^3.$

Возведите дробь в степень:

a)
$$\left(\frac{a}{b}\right)^{12}$$

$$\left(-\frac{a}{b}\right)^4$$

B)
$$\left(\frac{c}{d}\right)^{17}$$

a)
$$\left(\frac{a}{b}\right)^{12}$$
; 6) $\left(-\frac{a}{b}\right)^{4}$; B) $\left(\frac{c}{d}\right)^{17}$; r) $\left(-\frac{c}{d}\right)^{5}$.

$$\left(\frac{2a}{3b}\right)^6$$
;

6)
$$\left(-\frac{c}{2d}\right)^5$$

B)
$$\left(\frac{7x}{8u}\right)^3$$

a)
$$\left(\frac{2a}{3b}\right)^6$$
; 6) $\left(-\frac{c}{2d}\right)^5$; B) $\left(\frac{7x}{8y}\right)^3$; r) $\left(-\frac{3m}{5n}\right)^2$.

a)
$$\left(\frac{3^5}{7^2}\right)^2$$

6)
$$\left(\frac{-9^2}{9}\right)^4$$

B)
$$\left(\frac{2^5}{5^2}\right)^2$$
;

a)
$$\left(\frac{3^5}{7^2}\right)^2$$
; 6) $\left(\frac{-9^2}{8}\right)^4$; B) $\left(\frac{2^5}{5^2}\right)^2$; r) $\left(\frac{(-3)^3}{(-7)^2}\right)^3$.

21.16

Представьте в виде степени дробь:

a)
$$\frac{3^8}{5^8}$$

6)
$$\frac{m^3}{8}$$

a)
$$\frac{3^8}{5^8}$$
; b) $\frac{m^3}{8}$; b) $\frac{7^9}{11^9}$; r) $\frac{c^4}{16}$.

r)
$$\frac{c^4}{16}$$

21.17

Представьте в виде степени с показателем, отличным от единицы: а) b^3x^3 ; б) $25a^4$; в) $32x^{10}y^5$; г) $16a^8b^{12}$.

Найдите наиболее рациональным способом значение выражения:

- 21.18 O a) $8^5 \cdot 0,125^5;$ B) $5^4 \cdot 0,4^4;$ c) $(1,25)^7 \cdot 8^7.$

21.19 O a)
$$\left(-\frac{5}{7}\right)^3 \cdot \left(-\frac{7}{3}\right)^3$$
; B) $\left(\frac{5}{6}\right)^6 \cdot \left(\frac{12}{5}\right)^6$;

B)
$$\left(\frac{5}{6}\right)^6 \cdot \left(\frac{12}{5}\right)^6$$

6)
$$\left(-\frac{7}{8}\right)^{10} \cdot \left(-\frac{8}{7}\right)^{10}$$
; r) $\left(\frac{3}{4}\right)^4 \cdot \left(\frac{8}{3}\right)^4$.

r)
$$\left(\frac{3}{4}\right)^4 \cdot \left(\frac{8}{2}\right)^4$$
.

21.20 a)
$$\frac{2^8 \cdot 3^8}{6^6}$$
; b) $\frac{3^5 \cdot 4^5}{12^3}$; b) $\frac{7^{11} \cdot 9^{11}}{63^{10}}$; r) $\frac{2^8 \cdot 8^8}{16^7}$.

B)
$$\frac{7^{11} \cdot 9^{11}}{62^{10}}$$
;

r)
$$\frac{2^8 \cdot 8^8}{16^7}$$

21.21 **a** a)
$$\frac{16^3 \cdot 3^3}{48^2}$$
; b) $\frac{10^{12}}{2^6 \cdot 5^6}$; b) $\frac{5^{16} \cdot 3^{16}}{15^{14}}$; r) $\frac{12^6}{3^5 \cdot 4^5}$.

6)
$$\frac{10^{12}}{2^6 \cdot 5^6}$$

B)
$$\frac{5^{16} \cdot 3^{16}}{15^{14}}$$
;

r)
$$\frac{12^6}{3^5 \cdot 4^5}$$

а)
$$(10x)^5$$
 и $10x^5$, если $x > 0$; в) $(6x)^9$ и $6x^9$, если $x < 0$;

5)
$$\left(\frac{x}{2}\right)^7$$
 и $\frac{x^7}{2}$, если $x > 0$; г) $\left(\frac{x}{3}\right)^5$ и $\frac{x^5}{3}$, если $x < 0$.

Сравните числа
$$a$$
 и b :
a) $a = 14^7$, $b = 2^{14}$;
б) $a = 3^{30}$, $b = 12^{15}$.

Решите уравнение:

21.24 O a)
$$3x^3 = 24$$
; B) $5x^5 = -1215$; 6) $(3x)^3 = -27$; P) $(5x)^5 = 100000$.

21.25 a)
$$\frac{(2x)^5 \cdot (2x)^3 \cdot 2}{(4x)^3 \cdot 8x^4} = -3;$$
 b) $\frac{(5x)^7 \cdot (5x)^4 \cdot 25}{(25x^2)^4 \cdot 125x^2} = 100.$

Вычислите:

21.29 a)
$$\frac{2 \cdot 3^{20} - 5 \cdot 3^{19}}{9^9}$$
; b) $\frac{108 \cdot 6^7 - 108 \cdot 6^6}{216^3 - 36^4}$; 6) $\frac{(3 \cdot 2^{20} + 7 \cdot 2^{19}) \cdot 52}{(13 \cdot 8^4)^2}$; r) $\frac{(3^{15} + 3^{13}) \cdot 2^9}{(3^{14} + 3^{12}) \cdot 1024}$.

a)
$$\frac{2^{2x+1}}{3^x} = 4\frac{20}{27};$$
 B) $\frac{5 \cdot 25^x}{2^{4x}} = 7\frac{13}{16};$
6) $\frac{4^x \cdot 3^{2x}}{6^3} = 216;$ r) $\frac{2^{2x} \cdot 25^x}{2^7 \cdot 5^7} = 1000.$

a)
$$a = \frac{21^{40}}{63^{20}}$$
, $b = \frac{21^{39}}{63^{19}}$; 6) $a = \frac{12^{36}}{36^{18}}$, $b = \frac{12^{35}}{36^{17}}$.

§ 22 СТЕПЕНЬ С НУЛЕВЫМ ПОКАЗАТЕЛЕМ

22.1 Найдите
$$\left(\frac{2}{3}\right)^k$$
, если:

a)
$$k = 3$$

6)
$$k = 0$$
:

a)
$$k = 3$$
; 6) $k = 0$; B) $k = 1$; Γ) $k = 5$.

r)
$$k = 5$$
.

a)
$$a = 1$$

$$6) a = 0$$
:

a)
$$a = 1$$
; 6) $a = 0$; B) $a = -2$; r) $a = 10$.

r)
$$a = 10$$

Сравните значения выражений:

22.3 a)
$$\left(\frac{1}{3}\right)^2$$
 $H\left(\frac{1}{3}\right)^0$; b) $(-2)^3$ $H(-2)^0$;

б)
$$\left(-\frac{1}{4}\right)^2$$
 и $\left(\frac{1}{4}\right)^0$; r) 5^0 и 5^4 .

22.4 а)
$$-2^3$$
 и -2^0 ; в) $-\left(\frac{1}{2}\right)^2$ и $(-2)^0$;

б)
$$\left(\frac{3}{4}\right)^0$$
 и $-\left(\frac{3}{4}\right)^2$; г) -5^5 и -5^0 .

Вычислите:

22.5 a)
$$3^5 + 4^4 + 8^0$$
; b) $3^0 \cdot 2^5 - 15^2$;

6)
$$\left(\frac{2}{3}\right)^3 + \left(\frac{1}{2}\right)^3 \cdot \left(\frac{7}{8}\right)^0$$
; r) $(1.5)^3 + 4^4 + 15^0$.

22.6 a)
$$(-2)^6 - 5,9^0 - 3^2 \cdot 3;$$
 b) $7,8^0 + ((-2)^2)^3 - 5^3 : 5;$ 6) $7,4^0 + (-2^2)^3 - 5^5 : 5^3;$ r) $3^{13} : (3^3)^3 - (-2^3)^2 + 4,7^0.$

Упростите выражение:

22.7 **O** a)
$$\frac{a^2 \cdot a^5 : a^6}{a^7 \cdot a^8 : a^{14}};$$
 B) $\frac{a^7 \cdot a^9 : a^4}{a^{16} : a^6 \cdot a^2};$

$$\text{ f) } \frac{b^{12}b^{11}:(b^3)^5}{(b^5)^4b^4:(b^3)^8}; \qquad \text{ r) } \frac{(b^4)^3(b^3)^3:b^{19}}{b^{19}b:(b^4)^5}.$$

22.8 a)
$$(a-b)^{10} \cdot (a-b) : (a-b)^{11}$$
;

6)
$$\left(\frac{p}{2}\right)^5 \cdot \left(\frac{p}{2}\right)^3 : \left(\frac{p}{2}\right)^8$$
;

B)
$$(k+l)^4$$
: $(k+l)^3 \cdot (k+l)^2$: $(k+l)^3$;
r) $(-pq)^{14} \cdot (-pq)^{13}$: $(-pq)^{27}$.

Вычислите:

22.9 **O** a)
$$\left(\frac{5}{2}\right)^2 : \left(-\frac{25}{4}\right) \cdot \left(\frac{5}{2}\right)^0$$
;

6)
$$\left(\frac{1}{3}\right)^3 \cdot \left(-\frac{1}{9}\right) : \left(\frac{1}{3}\right)^5$$
;

B)
$$1,5^4:(-1,5)^3\cdot(-1,5)^0:1,5;$$

r)
$$\left(\frac{8}{27}\right)$$
: $\left(\frac{2}{3}\right)^2 \cdot \left(\frac{16}{81}\right)^0$.

22.10 **o** a)
$$\frac{1,6^2 - (3,8)^0 \cdot 16 \cdot 0,4 + 0,4^2}{1,88 - 0,2^2}$$
;

6)
$$\frac{3}{4} - (12^{0})^{3} - \left(1\frac{1}{2}\right)^{2} + 4^{3} \cdot 0,1;$$

B)
$$\frac{1,2^2-1,8^2}{1,2^0\cdot 0,6-1,8^0\cdot 0,96}$$
;

r)
$$((-8)^0)^5 - 6^2 \cdot \frac{1}{6} - 5^2 \cdot 0.2$$
.

22.11 О Сравните значения выражений:

a)
$$\left(\frac{2}{3}\right)^5 \cdot \left(\frac{3}{2}\right)^5$$
 $u \left(1,5+\frac{2}{3}\right)^6$;

6)
$$\left(\frac{2}{3}\right)^7 \cdot \left(\frac{3}{2}\right)^6 = 10 \cdot \left(1.5 + \frac{2}{3}\right)^6$$
;

B)
$$\left(-\frac{2}{3}\right)^9 \cdot 1,5^{10} \text{ M } \left(-\frac{3}{2} - \frac{2}{3}\right)^0$$
;

г)
$$\left(\frac{2}{3}\right)^3 \cdot (-1,5)^4$$
 и $\left(\frac{3}{2} - \frac{2}{3}\right)^0$.

22.12 О При каких значениях x верно равенство:

a)
$$2^x = 1$$
;

6)
$$5^{x-3} = 1$$
;

$$B) \left(\frac{1}{3}\right)^x = 1;$$

a)
$$2^x = 1$$
; 6) $5^{x-3} = 1$; b) $\left(\frac{1}{3}\right)^x = 1$; r) $\left(\frac{7}{9}\right)^{x+5} = 1$?

При каких значениях переменных не имеет смысла выражение:

a)
$$(x-2)^0$$
:

B)
$$(2y + 4)^0$$
;

6)
$$(x^2 - 9)^0$$

22.13 O a)
$$(x-2)^0$$
; B) $(2y+4)^0$; 6) $(x^2-9)^0$; r) $(4y^2-25)^0$?

22.14 a)
$$\left(\frac{2x+1}{3} - \frac{3x+2}{4}\right)^0$$
; 6) $(0.7a^2 - 0.028)^0$?

22.15 Решите уравнение:

a)
$$\frac{3x-1}{5} + \frac{6x+1}{3} = (3x-1)^0$$
; 6) $x^2 - 3 = (2x^2 - 5x + 2)^0$.

$$6) x^2 - 3 = (2x^2 - 5x + 2)^0$$

22.16

Постройте график уравнения:

a)
$$y - x^0 = 1$$
;

B)
$$x - u^0 = 2$$

$$6) y - 2(x - 1)^0 = 0;$$

a)
$$y - x^0 = 1;$$
 B) $x - y^0 = 2;$ 6) $y - 2(x - 1)^0 = 0;$ F) $2x + 3(y + 2)^0 = 1.$

§ 23 РАБОТА С ТАБЛИЦАМИ **РАСПРЕДЕЛЕНИЯ**

В № 20.1—20.6 (см. с. 101—102) все выражения имеют вид $(A)^k$, где A — буквенное выражение, а k — показатель степени. Все показатели выписаны подряд по мере их появления, получился ряд данных (измерение).

- а) Найдите наименьшее значение k.
- б) Найдите наибольшее значение k.
- в) Каков размах измерения?
- г) Каков объём измерения?

- а) Входит ли число 17 в данные этого измерения? Сколько раз?
- б) Входит ли число 9 в данные этого измерения? Сколько раз?
- в) Составьте таблицу распределения показателей степени k по условию задач 20.1-20.6.
- г) Сколько различных показателей k встретилось в ответах этих задач?

23.3 О Во всех школах микрорайона была проведена проверочная работа по теме «Степень с натуральным показателем и её свойства». Работу по болезни не писали 20 семиклассников. Вот итоги работы:

Оценка	*2*	*3*	e4.	*5 *	Всего: 4 оценки
Процент получивших оценку (от общего числа семиклассников)	10 %	20 %	40%	25 %	Bcero: 95%

- а) Какой процент составляют школьники, пропустившие эту контрольную?
- б) Найдите общее количество семиклассников микрорайона.
- в) Сколько школьников составляют 1 % от общего числа семиклассников в этих школах?
- г) Сколько всего семиклассников получили «4» или «5»?
- 23.4 🔵 а) Заполните таблицу распределения результатов из задачи 3:

Оценка	0H0	•2•	*3*	«4»	*5*	Всего: 5 оценок
Число получивших оценку						Bcero:

- б) Каков размах этого измерения?
- в) Укажите моду измерения. Сколько раз она встретилась?
- г) Постройте круговую диаграмму по данным таблицы из пункта а).
- 23.5 О Среди следующих равенств есть верные, но могут быть и неверные:

$$(a^5:a^2)^3=a^9, (b^3)^2=b^5, (x^3\cdot x^4)^5=x^{35},$$

 $(a^5:a:a^2)^2=a^4, (t^2)^5:t=t^9.$

На карточке № 1 записывают одно из равенств, а на карточке № 2 — одно из оставшихся равенств.

- а) Сколько существует способов такого выбора двух равенств?
- б) В скольких случаях на обеих карточках будут верные равенства?
- в) В скольких случаях на обеих карточках будут неверные равенства?
- г) В скольких случаях основания степеней на обеих карточках совпадут между собой?

ОДНОЧЛЕНЫ. **АРИФМЕТИЧЕСКИЕ** ОПЕРАЦИИ НАД ОДНОЧЛЕНАМИ

§ 24

понятие одночлена. СТАНДАРТНЫЙ ВИД ОДНОЧЛЕНА

Выясните, является ли данное выражение одночленом; если да, то укажите коэффициент и буквенную часть:

6)
$$\frac{1}{2}a^2bc^3$$

$$-0.3c^5d^9$$

6)
$$\frac{1}{2}a^2bc^3$$
; B) $-0.3c^5d^9$; r) $(-2)^3u^nz^nw^n$.

$$B) -0,6;$$

a)
$$x - y$$

a)
$$x - y$$
; 6) $\frac{3p^3}{4q^4}$;

B)
$$2(c^2+d^2)$$
;

B)
$$2(c^2+d^2)$$
; r) $\frac{c^3+d^3}{c^3-d^3}$.

a)
$$-\frac{9c}{13d}$$
; 6) $\frac{6cd}{11}$;

$$6) \frac{6cd}{11}$$

B)
$$-12m^3n^2$$
;

B)
$$-12m^3n^2$$
; r) $\frac{18m^3}{19n^3}$.

24.5

Используя переменные a, b, c, запишите:

- а) два любых одночлена с коэффициентами, отличными от нуля;
- б) два разных одночлена с коэффициентами, равными 1;
- в) два одночлена с одинаковыми коэффициентами и разными буквенными частями;
- г) два разных одночлена с одинаковыми буквенными частями.

Используя переменные p и q, запишите: 24.6

а) три разных одночлена с одинаковой буквенной частью;

б) три разных одночлена с одинаковыми коэффициентами.

Найдите значение одночлена: 24.7

а) $7x^3$, если x = 0, x = 1, x = -1:

б) $0.04cd^2$, если c = 15, d = -2;

в) $9y^2$, если y = 2, y = -2, y = 10;

 $r) \frac{3}{2}pq^3$, если p = 1, q = 2.

Приведите одночлен к стандартному виду и укажите коэффициент и буквенную часть:

a) $3m^4 \cdot m$; 24.8

B) $42y^5 \cdot y^8 \cdot y^{12}$;

r) $-7z^3 \cdot 4t^8$ 6) $5x \cdot 10u^2$:

a) 7a · 3b · 4c; 24.9

B) $8u^4 \cdot 4v^3 \cdot (-2w^5)$;

6) $15a \cdot 2p^2 \cdot 4r^5$:

r) $-\frac{1}{2}c^{12} \cdot 2d^{18} \cdot s^{10}$.

24.10 O

a) $13a \cdot 2b \cdot 4b \cdot 8a$; B) $14c^3 \cdot (-5)cd^2 \cdot 3d$; 6) $5^2pq^2 \cdot (-4)^2qpq$; P) $2^4x^9y^8(-2)^2(-x)^4(-y)^3$.

a) $0.45a^2bc^5 \cdot 1\frac{1}{9}a^7b^6c$; B) $0.4b^3x^4y \cdot \frac{1}{24}bx^3y^7$;

6) $-6p^4n^3\left(-\frac{1}{2}n^2p^2\right)$; r) $-3a^2b^4\left(-\frac{1}{\alpha}a^3b^4\right)$.

24.12 O a) $17x^ny^8z^3 \cdot 2xy^5z^4$; B) $12p^3q^2r^{10}\left(\frac{1}{12}pr^5q^6\right)$;

6) $-2x^3c^5d^8\left(-\frac{1}{2}c^6dx\right)$; r) $-99a^ms^nt^n\left(-\frac{1}{22}a^ns^kt^m\right)$.

o a) $0.5ab^2 \cdot (-3a^2b) \cdot \left(-\frac{2}{3}a^7b^5c\right)$;

6) $(-1.5x^2y) \cdot 4xy^3 \cdot \left(-2\frac{1}{2}x^5y^6z\right)$.

24.14 Приведите левую часть равенства к одночлену стандартного вида и решите полученное уравнение:

a) $2x \cdot 3x^2 = 6$; b) $x \cdot 5x \cdot \frac{1}{5}x = -1$;

6) $2x \cdot 5x = 10$; r) $0.5x^2 \cdot (-2x^2) = -1$.

- а) Стороны прямоугольника относятся как 3: 4. Найдите сторо-24.15 O ны прямоугольника, если его площадь равна 48 см².
 - б) Ширина прямоугольника составляет $\frac{5}{7}$ от его длины. Найдите стороны прямоугольника, если его площадь равна 35 дм².
- В прямоугольном параллелепипеде длина в 2 раза больше шири-24.16 ны, а высота в 4 раза больше ширины. Найдите измерения прямоугольного параллелепипеда, если его объём равен 1000 см³.
- 24.17 O В прямоугольном параллелепипеде длина в 2 раза больше ширины, а высота составляет $\frac{5}{2}$ длины. Найдите измерения прямоугольного параллелепипеда, если его объём равен 640 м³.
- Измерения прямоугольного параллелепипеда относятся как 2:3:4, 24.18 а его объём равен 648 дм³. Найдите измерения прямоугольного параллелепипеда.
- Измерения прямоугольного параллелепипеда относятся как 3:4:6, 24.19 а его объём равен 576 см3. Найдите площадь поверхности прямоугольного параллелепипеда.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ОДНОЧЛЕНОВ

Выясните, являются ли данные одночлены подобными:

а) За и 4а; 25.1

- в) 3у3 и 3у3;
- б) 19x² и 35x²;
- г) m" и 5m".
- а) 3a²b³c и 4a²b³c; 25.2
- в) $17.8c^3d^6$ и $3.01c^{12}d^4$;
- б) 6x² и 15x⁵;
- r) $\frac{3}{13}r^3s^2t^5$ u $\frac{11}{18}r^3s^2t^5$.
- а) 7a² и 3a³; 25.3
- в) $-0.2m^2n^4p^8$ и $-0.38m^2p^8n^4$;
- 6) $\frac{2}{7}x^3y^4z$ и $\frac{9}{10}x^3y^4z$; r) $\frac{1}{2}y^2z$ и $\frac{1}{3}yz^2$.

25.4

Вместо символа * поставьте одночлен, подобный данному и такой, коэффициент которого в 3 раза больше, чем у данного одночлена:

- a) 1.7x2y6 и *:
- в) c3d12z5 и *:
- б) * и 3,6 $a^2b^2c^9$; г) $\frac{1}{2}m^2n^8p^{14}$ и *.

25.5

Среди данных одночленов найдите подобные:

- a) $3x^2y$; $7x^2y$; $10xy^2$; $0.25x^2y$;
- 6) $12a^2b^2$; $5a^2b^2$; $1.2a^2b^3$; $2.04a^2b^2$; B) $9c^5b^{12}$: $0.1c^5d^{12}$: c^5d^{12} : c^3d^7 :
- r) $\frac{1}{2}m^7n^{10}$; $\frac{1}{7}m^{11}n^{15}$; $\frac{3}{8}m^{11}n^{15}$.

25.6

Приведите одночлены к стандартному виду и укажите те из них, которые подобны одночлену 7m9:

- a) $m \cdot m^2 \cdot m^3 \cdot 8 \cdot m$; B) $36m^3 \cdot m \cdot 2 \cdot m \cdot 0.1 \cdot m^4$;
- 6) $\frac{12}{12}m \cdot m^3 \cdot m^5$; r) $\frac{1}{2}m^{13} \cdot m^7 \cdot 0.5$.

Выполните действия:

25.7

25.8

a) 3x + 5x;

- B) 6y + 7y;
- 6) 3p + 5p + p:
- r) 7a + 9a + 4a.
- a) 1.2c + 1.2c;
- B) 3.5d + 8.4d:

- $6)\frac{1}{9}m + \frac{1}{4}m;$
- r) $\frac{1}{5}n + \frac{3}{10}n$.

25.9

- a) $13x^2 + 20x^2$:
- B) $2.1z^3 + 3.05z^3$:
- 6) $\frac{1}{2}p^{7} + \frac{3}{7}p^{7}$;
- $\Gamma = \frac{1}{2}q^{k} + \frac{1}{4}q^{k}$.

25.10

- a) $1,7d^4-0,7d^4$; B) m^4-m^4 ; b) $7p^8-3p^8-2p^8$; F) $12x^8-x^8-3x^8$.

25.11

- a) 20y 12y y 2y; B) $30x^2 15x^2 7x^2$;
- 6) $\frac{2a^2}{2} \frac{a^2}{2}$;

r) $\frac{3}{4}a^2b - \frac{1}{4}a^2b$.

25.12

- a) $5x^2y + 6x^2y$;
- B) $3.5b^2d^3 8.4b^2d^3$:
- 6) $\frac{1}{2}c^3d + \frac{1}{2}c^3d$;
- Γ) $1\frac{3}{8}m^3n^4 + 3\frac{1}{16}m^3n^4$.

Вместо символа * поставьте такой одночлен, чтобы получилось верное равенство:

- 25.13
- a) $5a^2b^3 + * = 13a^2b^3$; B) 7.4pq * = 4pq; 6) $-12x^3 - * = -24x^3$; r) * + 0.5 $m^2n = 1.7m^2n$.

- 25.14

- a) $-18a^5b^7 * = 0$; B) $0 * = 2,4x^3yz$; 6) $* + 6st^4 = -1,2st^4$; r) 13xyz * = 18,3xyz.
- 25.15
- представьте одночлен 6cd² в виде суммы одночленов несколькими способами.
- б) Представьте одночлен $49x^3y^2$ в виде суммы одночленов несколькими способами.

Упростите выражение:

- 25.16 O
 - a) $5x \cdot 2y + 3x \cdot 6y + 2x \cdot 7y$;
 - 6) $3y^2x + 6x \cdot 3y \cdot 2y + 2yxy$;
 - B) $-11ab + a \cdot 8 \cdot b + 5ab$:
 - r) $ab^2 + 9abb + 3bab + abb$.
- 25.17 O
- a) $3a^2b + 7a \cdot 9ba + 10b \cdot 3a^2(-1)$:
 - 6) $x^2y^2 \cdot 7 + 19x \cdot 2xyy 9x \cdot 3yxy$:
 - B) $az^3 + 7az^3 6z \cdot 2az^2 5az^3$;
 - r) $m^8n^4 + 2m^3 \cdot 3m^5n^4 7m^8n^4$.

Решите уравнение:

- 25.18 a) 0.5x + 0.4x = 9;
- B) $x \frac{13}{18}x = \frac{1}{2}$;

- 6) $\frac{1}{3}x + \frac{1}{4}x \frac{1}{12}x = 5;$
- $\Gamma) \ 20x 13x 12x = 0.6.$

- 25.19 **a**) 0.71x 13 = 9 0.39x:
- B) 8x 1.79 = 4.61 8x:

- 6) $1.2 + \frac{3}{10}x = \frac{8}{15}x + 0.78$; r) $\frac{5}{12}x + 1.3 = 0.53 + \frac{7}{8}x$.

- **25.20 a)** $2x^3 + 3x^3 = 40$:

B) $7x^3 - 5x^3 = -54$:

- 6) $9x^2 6x^2 = 192$:

r) $x^8 + 7x^8 = -8$.

- **25.21** O a) $\frac{5}{7}x^9 \frac{3}{14}x^9 1\frac{1}{2}x^9 = -1;$
 - 6) $2.05x^6 3.07x^6 + 1.03x^6 = 0.01$.

Выполните действия:

25.22 a)
$$42b^2c^3d^2 + 54b^2c^3d^4 + 48b^2c^3d^2 + 12b^2c^3d^2$$
;

6)
$$1.8m^3n^4z^8 + 3.2m^3n^4z^8 + 1.05m^3n^4z^8$$
.

25.23 **O** a)
$$\frac{1}{2}a^2b^2c^n + \frac{1}{3}a^2b^2c^n + \frac{1}{8}a^2b^2c^n$$
;

6)
$$3,09x^ny^nz^n + \frac{1}{10}x^ny^nz^n + 0,01x^ny^nz^n + \frac{1}{20}x^ny^nz^n$$
.

25.24 (a)
$$a - 1, 4a^3 - (-0,09a^3) + (-1,5a^3) + 2a^3;$$

6)
$$3.9x^4 + (-2.7x^4) - (-0.8x^4) + (-2x^4)$$
.

25.25 O a)
$$-\frac{c}{5} + \left(-\frac{c}{3}\right) - \left(-\frac{2c}{5}\right) - \frac{c}{60};$$
 6) $-\frac{p}{5} - \left(-\frac{2p}{3}\right) - \frac{p}{4} + \left(-\frac{p}{60}\right).$

Упростите выражение:

25.26 a)
$$3x \cdot 2y + 5x \cdot 2y + 6x \cdot 2y;$$

6)
$$1,2a^2b + 3,2aba + 6,8aab + 8,8baa;$$

B)
$$\frac{1}{2}xy^2x + \frac{1}{2}xyxy + \frac{1}{6}xy^2x$$
;

r)
$$1\frac{3}{5}mn^3r^8 + \frac{7}{10}n^2r^5nr^3m + \frac{3}{20}mr^7n^2rn$$
.

6)
$$5z^nq^n - 3z^{n-1}q^nz - q^{n-1}zqz^{n-1}$$
.

6)
$$3nmk \cdot 4n - \frac{3}{8}nm \cdot \left(2\frac{2}{3}\right) \cdot nk + \frac{2}{9}n^2m \cdot \left(-4\frac{1}{2}\right)k$$
.

25.29 O а) Дан одночлен
$$1\frac{1}{5}m^3n^2l^4$$
. Запишите одночлен, который в сумме с данным даёт одночлен $m^3n^2l^4$.

б) Дан одночлен
$$-\frac{3}{7}x^2y^3z^2$$
. Запишите одночлен, который в сумме с данным даёт одночлен $x^2y^3z^2$.

- а) с одинаковыми по знаку коэффициентами;
- б) с разными по знаку коэффициентами.

- **25.31** О Представьте одночлен $5,3a^5b^2c$ в виде суммы одночленов:
 - а) с одинаковыми по знаку коэффициентами;
 - б) с разными по знаку коэффициентами.
- **25.32** О а) К разности одночленов $16x^2y^4$ и $13x^2y^4$ прибавьте сумму одночленов $23x^2y^4$ и $10x^2y^4$.
 - б) К сумме одночленов $43a^3b^2$ и $-27a^3b^2$ прибавьте разность одночленов $34a^3b^2$ и $20a^3b^2$.
- **25.33** О а) Из суммы одночленов $2,38n^4p$ и $-1,48n^4p$ вычтите разность одночленов $4,72n^4p$ и $-1,28n^4p$.
 - б) Из разности одночленов $2,57k^3n^4$ и $-1,43k^3n^4$ вычтите сумму одночленов $-8,39k^3n^4$ и $5,39k^3n^4$.
- 25.34 O В данном выражении вместо символа * расставьте знаки «+» и «-» так, чтобы получилось верное равенство:
 - a) $25a^2b^4 = 3a^2b^4 * 5a^2b^4 * 7a^2b^4 * 10a^2b^4$;
 - 6) $43x^3y^9 = 50x^3y^9 * 7x^3y^9$;
 - B) $79c^8d^{10} = 85c^8d^{10} * 10c^8d^{10} * 4c^8d^{10}$;
 - r) $99p^nq^nz^n = 100p^nq^nz^n * 10p^nq^nz^n * 15p^nq^nz^n * 4p^nq^nz^n$.
- 25.35 О Сумма двух третей неизвестного числа и его половины на 7 больше самого неизвестного числа. Найдите это число.
- 25.36 О Сумма одной четверти и одной шестой неизвестного числа на 5 меньше его половины. Найдите это число.
- Первое число в 1,5 раза больше второго. Известно, что удвоенное первое число на 24 больше, чем третья часть второго. Найдите эти числа.
- 25.38 О Вкладчик положил в банк некоторую сумму денег из расчёта 10 % годовых. Через год он снял со своего вклада 600 р., в результате чего на его счёте осталась сумма, равная половине первоначального вклада. Сколько денег будет на счету у вкладчика в конце второго года хранения?
- Для выполнения практической работы ученик получил три квадрата. Сторона первого квадрата в 2 раза меньше стороны третьего, а сторона второго составляет ²/₃ стороны третьего квадрата. Найдите сторону каждого квадрата, если сумма их площадей равна 61 см².

- Ученик изготовил три куба. Ребро первого куба в 3 раза больше, чем ребро второго, а ребро третьего составляет ⁴/₃ от ребра первого. Найдите ребро каждого куба, если объём первого куба на 296 см³ меньше объёма третьего куба.
- 25.41 О Некоторое число уменьшили на 15 %, а затем результат увеличили на 10 %. После этого получили число, которое на 13 меньше первоначального. Найдите первоначальное число.
- Задуманное число сначала увеличили на 12 %, а затем результат уменьшили на 24 %. Полученное при этом число оказалось на 186 меньше задуманного. Найдите задуманное число.
- 25.43 О В прямоугольном параллелепипеде длина в 3 раза больше ширины и в 2 раза меньше высоты. Найдите измерения прямоугольного параллелепипеда, если площадь его поверхности равна 864 см².
- 25.44 О В прямоугольном параллелепипеде ширина в 2 раза меньше высоты и составляет $\frac{4}{5}$ его длины. Найдите измерения параллелепипеда, если площадь его поверхности равна 736 м².
- 25.45 О Измерения прямоугольного параллелепипеда относятся как 2:3:5, а площадь его поверхности равна 62 дм². Найдите измерения прямоугольного параллелепипеда.

§ 26 УМНОЖЕНИЕ ОДНОЧЛЕНОВ. ВОЗВЕДЕНИЕ ОДНОЧЛЕНА В НАТУРАЛЬНУЮ СТЕПЕНЬ

Найдите произведение данных одночленов:

- [26.1] a) $2x \cdot 3y$; b) $7a \cdot 5b$; b) $31c \cdot 3d$; r) $15z \cdot 3t$.
- (a) $7a \cdot 2b \cdot 3c$; (b) $10m \cdot 5n \cdot 2q$; (c) $10x^2 \cdot 2y^2 \cdot 3z^3$; (d) $17p^2 \cdot 2q^2 \cdot 0.5s^3$.
- 26.3 a) $7x^2 \cdot 5x^2 \cdot 6x^3$; b) $71x^2y^3z^8 \cdot 2xyz$; 6) $\frac{1}{2}a^2 \cdot \frac{1}{3}b^3 \cdot \frac{1}{6}c^4$; r) $54c^2d^2f^3 \cdot cd^3f$.

Возведите одночлен в указанную степень:

26.4

- a) $(3a^2c)^2$;
- в) (-0,2c3d)4;
- 6) $\left(-\frac{1}{3}xy^2\right)^4$; r) $\left(-\frac{1}{2}abc\right)^5$.

- 26.5

- a) $(-6x^3y^3)^0$; B) $(-10x^2y^4)^5$; 6) $-(-5a^3x^2)^3$; r) $-(-2ax^3y^2)^4$.

Рассмотрите пример 3 в § 26 учебника.

26.6

Представьте данный одночлен в виде произведения одночленов:

a) $56x^2y^3z^8$;

- B) 0,21c9d14f43;
- б) $102m^2n^3p^4$;
- Γ) $\frac{1}{2}r^7s^9t^{12}$.

26.7

Представьте одночлен $-24x^6y^9$ в виде произведения:

- а) двух одночленов; в) четырёх одночленов;
- б) трёх одночленов; г) пяти одночленов.

26.8

Возведите одночлен:

- а) $6x^{3}y^{6}$ в квадрат:
- б) $-2ab^3$ в четвёртую степень;
- в) $-m^3n$ в пятую степень;
- г) −3a²bc³ в куб.
- 26.9

Представьте данный одночлен в виде квадрата некоторого одночлена:

- a) 81a4;
- б) 36b⁶; в) 144c¹²; г) 169d⁴.

26.10

Представьте данный многочлен в виде куба некоторого одночлена:

- a) 0,008b⁶; 6) 0,027b⁹;
- B) $0{,}001y^{24}$; r) $-\frac{8}{27}a^6$.

Найдите произведение данных одночленов:

26.11

- a) $-5a^2b \cdot (-6ab^2)$; B) $-17x^3y \cdot (-2x^2y^2)$;
- - 6) $41c^2d \cdot (-4cd)$: r) $-13m^2n^2p^3 \cdot (-2mn^2p)$.

- **26.12 O** a) $0.2c^2d \cdot 5.4c^3d^3$; B) $-b^3 \cdot 0.5b^2$;

 - 6) $8x^2 \cdot \left(-\frac{3}{16}y\right)$; r) $2\frac{1}{3}m^2p^3 \cdot 5\frac{1}{7}mp$.

6)
$$6\frac{1}{2}n^2q \cdot 7\frac{1}{13}nq^3$$
;

26.14 O a)
$$5,1p^3q^4 \cdot (-2pq^8)$$
;

6)
$$-2.5z^3 \cdot \left(\frac{3}{5}z^4\right)$$
;

B)
$$0.75d^3 \cdot (-0.1d^4)$$
;
r) $-\frac{3}{20}x^2y \cdot \frac{40}{51}xy^2$.

r)
$$\left(-\frac{3}{4}\right)xy^2 \cdot (-0.4x^2y^3)$$
.

Упростите выражение:

26.15 O a)
$$20a^3 \cdot (5a)^2$$
; 6) $-0.4x^5 \cdot (2x^3)^4$;

a)
$$(3x^6y^3)^4 \cdot \left(-\frac{1}{-}xy^2\right)$$
;

B)
$$(-c^3)^2 \cdot 12c^6$$
;
r) $(4ac^2)^3 \cdot 0.5a^3c$.

26.16 O a)
$$(3x^6y^3)^4 \cdot \left(-\frac{1}{81}xy^2\right)$$
;

6)
$$\left(\frac{2}{3}x^2y^3\right)^3 \cdot (-9x^4)^2$$
;

B)
$$(3a^2)^2 \cdot (-6a^3)$$
;
r) $\left(\frac{1}{8}x^2y^3\right) \cdot (2x^6y)^4$.

26.17 O a)
$$(0,2b^6)^3 \cdot 5b$$
;

6)
$$\frac{9}{16}p^7 \cdot \left(-1\frac{1}{3}p^4\right)^0$$
;

в)
$$(2ab)^4 \cdot (-7a^7b)$$
;
г) $\left(3\frac{1}{2}a^2\right)^3 \cdot 81a^5$.

26.18 **O** a)
$$\frac{3}{5}a^2b^2c \cdot 5ab^2c^3 \cdot \frac{1}{3}ac^2$$
;
6) $\frac{1}{6}x^5y^4z^3 \cdot (-8xy^3z)$;

B)
$$3.5xz^3 \cdot \left(-3\frac{1}{2}x^2z\right) \cdot (-5xz);$$

r) $2cd^3 \cdot \left(-\frac{1}{2}cd^2\right) \cdot (-2c^2d^2).$

26.19 **o** a)
$$ab \cdot (-a^2b) \cdot (-ab^2)$$
; 6) $x^2y \cdot xy \cdot (-x^2y^2)$;

B)
$$mn \cdot (-m^2n^5) \cdot (-m^8n^4)$$
;
B) $mn \cdot (-m^2n^5) \cdot (-m^8n^4)$;
C) $x^2y \cdot xy \cdot (-x^2y^2)$;
C) $(-p^3q^4) \cdot (-pq) \cdot (-2p^2q^2)$.

26.20 a)
$$1\frac{1}{6}cd \cdot \left(-\frac{6}{7}c^3d^2\right);$$

a)
$$1\frac{1}{6}cd \cdot \left(-\frac{6}{7}c^3d^2\right);$$

B) $\frac{19}{23}mn^8p^9 \cdot \left(-\frac{46}{57}m^{10}n^3p^2\right);$
6) $-1\frac{1}{4}a^2b^3c^7 \cdot \left(-1\frac{1}{15}ab^7c^8\right);$
F) $-\frac{1}{14}xyz \cdot \left(-2\frac{4}{5}x^2y^2z^6\right).$

B) $(-2a^8b^5c^9)^8$;

26.21 O a)
$$(0,2a^3b^4)^4$$
;
6) $\left(1\frac{1}{2}x^2y^5z^8\right)^3$;

B)
$$(-0,3b^8c^7d^6)^2$$
;
F) $\left(-\frac{1}{9}a^3x^3y^3\right)^0$.

26.22 **O** a)
$$(-0.5a^2b^3c^9)^2$$
;

5)
$$(0.06m^2n^3p)^2$$
; r) $(-0.4x^2y^3z^8)^3$

6)
$$\left(-1\frac{1}{4}p^2q^2z^8\right)^4$$
;

B)
$$(-1.6m^3n^2p^9)^2$$
;

$$r$$
) $\left(-2\frac{3}{5}r^9s^{15}t^{12}\right)^2$.

6)
$$\left(-\frac{1}{9}xy^3\right)^3 \cdot (4y^5)^2$$
;

B)
$$-(3x^6y^2)^3 \cdot (-x^2y)^4$$
;

r)
$$(-5ab^6)^4 \cdot (0,3a^6b)^4$$
.

 $r)\left(\frac{1}{4}m^4n\right)^3\cdot(-32m^4n).$

26.25 a)
$$(-4a^3b^4)^2 \cdot 0,25b^7;$$

6)
$$\left(-\frac{2}{3}pq^4\right)^0 \cdot (-27pq^5);$$

B)
$$(0,4a^2bc)^2 \cdot (-1,5ab^3c^4)$$
;

26.26 a)
$$(-4.5a^3b^2y)^2 \cdot (-2aby)$$
;

6)
$$(-3bc^3d)^3 \cdot \left(-\frac{1}{27}b^2cd\right)$$
;

B)
$$(-0.8p^3x^2z)^2 \cdot (-2.5px^3z^4)$$
;

r)
$$\left(-3\frac{1}{3}a^2\right)^3 \cdot 81a^7$$
.

26.27 O a)
$$(-6a^3x^2)^2 \cdot \left(-\frac{1}{3}a^2x^2\right)^3$$
;

6)
$$(-3m^3n^2)^5 \cdot \left(-\frac{1}{2}mn^4\right)^4$$
;

B)
$$\left(-\frac{1}{9}a^2c^4\right)^2 \cdot (-3a^5c^3)^2$$
;

r)
$$\left(-\frac{3}{2}a^{7}b^{4}\right)^{2} \cdot \left(-\frac{2}{3}a^{6}b\right)^{0}$$
,

26.28 O a)
$$-\left(\frac{2}{3}x^2y^2\right)^4 \cdot \left(-2\frac{1}{4}xy^3\right)^3$$
;

6)
$$-\left(\frac{3}{7}x^2y^3\right)^2 \cdot \left(-2\frac{1}{3}xy^3\right)^3$$
.

Найдите значение выражения: 26.29

а)
$$(3xy)^3 \cdot \left(\frac{1}{3}xy^2\right)^2$$
, если $x = -3$, $y = \frac{1}{3}$;

б)
$$\left(\frac{1}{2}a^2b\right)^3 \cdot (4ab^3)^2$$
, если $a = \frac{1}{2}$, $b = -2$.

Замените символ * таким одночленом, чтобы выполнялось равен-26.30

a) *
$$\cdot 3b^2 = 9b^3$$
;

B)
$$-4a^3b^4 \cdot * = 16a^7b^9$$
;

$$6) 8a^2b^4 \cdot * = -8a^5b^5;$$

a) * ·
$$3b^2 = 9b^3$$
; B) $-4a^3b^4 \cdot * = 16a^7b^9$;
6) $8a^2b^4 \cdot * = -8a^5b^5$; P) $-17a^8b^{12} \cdot * = -34a^9b^{13}$.

Замените символ * таким одночленом, чтобы выполнялось равен-26.31

a) *
$$\cdot \frac{1}{5} m^4 n = -m^6 n^4$$
;

a) *
$$\cdot \frac{1}{5} m^4 n = -m^6 n^4$$
; 6) $\frac{3}{4} ab^2 \cdot * = 4a^4 b^5$.

Рассмотрите пример 4 в § 26 учебника.

Представьте заданный одночлен A в виде B^n , где B — некоторый 26.32 одночлен, если:

a)
$$A = 81a^6b^8c^{12}$$
, $n = 2$;

B)
$$A = 125x^3y^9z^{27}$$
, $n =$

6)
$$A = 256x^4y^{12}z^{24}$$
, $n = 4$;

a)
$$A = 81a^6b^8c^{12}$$
, $n = 2$;
b) $A = 125x^3y^9z^{27}$, $n = 3$;
c) $A = 256x^4y^{12}z^{24}$, $n = 4$;
r) $A = 144a^6b^{10}c^{18}$, $n = 2$.

Представьте заданный одночлен C в виде D^n , где D — некоторый 26.33 одночлен, если:

a)
$$C = 216c^9b^{12}f^{27}$$
, $n = 3$:

a)
$$C = 216c^9b^{12}f^{27}$$
, $n = 3$; B) $C = 1024p^{20}q^{100}r^{1000}$, $n = 10$;

6)
$$C = 243x^{10}y^{25}z^{40}$$
, $n = 5$; $C = 256a^{36}b^{216}c^{1296}$, $n = 4$.

Можно ли представить одночлен A в виде куба некоторого одно-26.34 члена В, если:

a)
$$A = 7a^9$$
:

B)
$$A = 81b^{10}c^{27}$$
:

б)
$$A = 27b^4$$
:

a)
$$A = 7a^9$$
; B) $A = 81b^{10}c^{27}$; 6) $A = 27b^4$; P) $A = -64x^9y^{81}$?

Можно ли представить одночлен С в виде квадрата некоторого 26.35 O одночлена D, если:

a)
$$C = 25a^{10}$$
;

a)
$$C = 25a^{10}$$
; b) $C = -36d^4$; b) $C = 8c^8$; r) $C = 16b^7$?

B)
$$C = 8c^8$$
;

r)
$$C = 16b^{7}$$
?

Представьте заданное выражение в виде квадрата или куба неко-26.36 O торого одночлена:

a)
$$2\frac{7}{9}x^4y^2z^8$$
;

б)
$$0,027m^9n^6$$
;

a)
$$2\frac{7}{9}x^4y^2z^8$$
; 6) $0.027m^9n^6$; B) $3\frac{1}{16}a^6d^4c^8$; r) $0.008u^{15}v^3$.

$$r) 0.008u^{15}v^3$$

Решите уравнение: 26.37

a)
$$(2x)^7 = 128$$
;

a)
$$(2x)^7 = 128$$
; B) $(3x)^5 = 32$;

6)
$$(5x)^4 = 81$$
;

6)
$$(5x)^4 = 81$$
; r) $(6x)^2 = 144$.

Вместо символов * запишите такие одночлены, чтобы получилось 26.38 верное равенство:

a)
$$(*)^2 \cdot (*)^3 = 4a^3b^2c^5$$
;

B)
$$(*)^4 \cdot (*)^3 = 8c^4d^{13}n^3$$
;

a)
$$(*)^2 \cdot (*)^3 = 4a^3b^2c^5;$$
 B) $(*)^4 \cdot (*)^3 = 8c^4d^{13}n^3;$ 6) $(*)^3 \cdot (*)^2 = -27p^3x^4y^2;$ P) $(*)^5 \cdot (*)^2 = 81b^{13}n^5t^4.$

r) (*)⁵ · (*)² =
$$81b^{13}n^5t^4$$

Решите уравнение: 26.39

a)
$$(5x^2)^3 \cdot (2x^3)^5 = 2^2 \cdot 10^3$$
;

6)
$$(9x^4)^2 \cdot \left(\frac{1}{2}x^2\right)^8 = \left(\frac{3}{4}\right)^4$$
;

B)
$$(3x^3)^4 \cdot (4x^5)^3 = -72^2$$
;

r)
$$(8x^5)^2 \cdot \left(\frac{1}{5}x^4\right)^3 = \left(\frac{4}{5}\right)^3$$
.

§ 27

ДЕЛЕНИЕ ОДНОЧЛЕНА на одночлен

Выполните деление одночлена на одночлен:

б)
$$x^8 : x^3$$
:

a)
$$a^3:a^2;$$
 6) $x^8:x^3;$ B) $y^{20}:y^{18};$ r) $z^{54}:z^{50}.$

$$\frac{1}{a}x:3$$

6)
$$\frac{1}{5}y:\frac{10}{11}$$

a)
$$\frac{1}{3}x:3;$$
 6) $\frac{1}{5}y:\frac{10}{11};$ B) $\frac{5}{7}a:\left(-\frac{25}{49}\right);$ r) $-\frac{13}{15}b:\left(-\frac{26}{45}\right).$

r)
$$-\frac{13}{15}b:\left(-\frac{26}{45}\right)$$

a)
$$-8x : (-4x)$$
; 6) $3c : c$; B) $7a : (-a)$; $r) -9b : (-b)$.

$$r) -9b : (-b)$$

a)
$$6x^3 : x^2$$
;

B)
$$-15z^8:z^8$$
;

r)
$$-90p^4$$
: $(-5p)$.

B)
$$-42cdm:(12c);$$

r)
$$-99xyz : (-9x)$$
.

a)
$$4.8axy: (1.6xy);$$
 B) $-0.81pqs: (0.009pq);$

$$\Gamma$$
) $6,5xz$: $(-1,3z)$.

27.8 a)
$$18a^{12}$$
 : $(6a^4)$; 6) $24b^{10}$: $(6b^{10})$;

B)
$$12a^7y^4$$
 : $(6a^2y^3)$;
F) $6b^5x^3$: $(3b^3x^2)$.

a)
$$44a^3b^2c^6$$
: $(11a^2bc^5)$;

p)
$$144m^8n^9b^4 \cdot (12m^2n^7)$$

a) $44a^3b^2c^6$: $(11a^2bc^5)$; B) $144m^8n^9k^4$: $(12m^2n^7k)$; 6) $198x^4y^4z^2$: $(2x^4y^3z)$; P) $258p^8q^4r^{17}$: $(3p^6q^2r^{15})$.

Упростите выражение:

27.10 a)
$$(5a^2b^2)^3 : (5ab)^2$$
;

B)
$$(49z^{10}t^{14}):(7zt)^0;$$

б)
$$(10x^3y^3)^4 : (2x^4y^3)^2$$
;

r)
$$(-x^2y^3z)^4$$
: (xyz) .

a)
$$(2m^2n^2)^4$$
: $(4mn)^2$;

O a)
$$(2m^2n^2)^4:(4mn)^2;$$
 B) $(-x^2y^3z^4)^5:(-xyz)^6;$

a)
$$(2m^2n^2)^4$$
; $(4mn)^2$;

6)
$$55p^3q^4:(5pq)^0;$$
 r) $(-5ac^3d)^3:(5cd)^2.$

Какое из предложенных заданий корректно, а какое некоррек-

27.12 O

тно: а) разделить
$$8c^3$$
 на $4c^{10}$;

- в) сложить $15a^3$ и $2a^2$;
- б) сложить 12ab, -5ab и 8ab;г) разделить 4c¹⁰ на 8c³?

Можно ли разделить одночлен $24a^3b^4c^5$ на одночлен: 27.13 O

a) -2abcd; 6) $18a^2b^2c^2$; в) 12a³b; r) 3a3b5c4?

Вместо символа * поставьте такой одночлен, чтобы получилось 27.14 O верное равенство:

a) $30x^5y^6z^7$: * = $5x^3y^2z^6$; B) * : $(p^3m^2q^7) = p^8m^4$ 6) * : $(5a^3b^4c^{10}) = 15a^5b^7c^{21}$; F) $d^2n^3z^{10}$: * = dn^2z^5 .

B) $^{\pm}$: $(p^3m^2q^7) = p^8m^4q^9$;

Упростите выражение:

27.15 O a) $\frac{(2cy^3)^2 \cdot 16c^5y}{(4c^2y)^3}$;

B) $\frac{(3x^2c^3)^2 \cdot 27x^{15}c^4}{(3x^2c)^5}$;

 $6) \frac{(9a^3b^4)^3}{(3a^2b)^2 \cdot 27a^4b^9};$

r) $\frac{(4a^3b^3)^2 \cdot (-a^2b)^3}{(-2a^3b^2)^3}$.

27.16 O a) $\frac{(-4x^2y^3)^3 \cdot (-5x^2y^4)^2}{(-10x^2y^5)^0}$;

6) $\frac{(-2a^3x^5)^4 \cdot (-9a^3x^5)^2}{(-6a^4x^7)^0}$.

27.17 O a) $\frac{(-6a^5x^9)^3}{(4a^3x^4)^3 \cdot (-9a^{-2}x^5)^5}$;

6) $\frac{(-2a^4b^3)^3 \cdot (3a^3b^9)^2}{(-2a^2b^3)^8}$.

27.18 O a) $\frac{(3a^5b^3)^4 \cdot (2a^3b^2)^0}{(6a^4b^2)^5}$;

6) $\frac{(10a^6x^5)^6}{(5a^9x^2)^4\cdot(2a^9x^6)^6}$.

27.19 O a) $\frac{(1,2x^2z^5)^2 \cdot (2x^4z)^3}{0.6x^8}$;

6) $\frac{(1,3a^4b^2)^3}{(-2,6ab)^2\cdot 5a^4b}$.

Решите уравнение: 27.20

a) $\frac{(7x)^{11} \cdot (49x)^2 \cdot 7}{(7x^2)^3 \cdot (343x)^4} = 56;$ 6) $\frac{(3x)^9 \cdot (9x^4)^3 \cdot x^2}{(3x^3)^5 \cdot (27x)^3} = -96.$

§ 28 ТАБЛИЦЫ РАСПРЕДЕЛЕНИЯ ЧАСТОТ

Найдите частоту данной буквы в данной считалочке: 28.1

- а) «Эники-беники ели вареники», буква «и».
- б) «Я садовником родился, не на шутку рассердился», буква «я».

- в) «Вышел месяц из тумана, вынул ножик из кармана», буква «а».
- г) «Шишел-мышел шёл да вышел», буква «ш».

28.2 ○ Подсчитайте все буквы русского алфавита, использованные при записи упражнения № 24.6 (с учётом повторений и включая буквы в обозначениях самих пунктов а) и б)) на с. 114. Найдите частоту буквы:

- a) «a»;
- б) «б»:
- B) «O»;
- r) «ч».

Требуется найти значение одночлена $2a^2 \cdot b^3$, если a принимает значения -1, 0, 1 или 2, a b принимает значения 0, 1 или 2.

- 28.3 O а) Для скольких различных пар (a, b) придётся проводить вычисления?
 - б) Сколько отрицательных чисел будет среди результатов?
 - в) Сколько нулей будет среди результатов?
 - г) Какова частота результата 0?
 - 28.4 (а) Заполните таблицу:

a	-1	-1	-1	0	0	0	1	1	1	2	2	2
b	0	1	2	0	1	2	0	1	2	0	1	2
$2a^2 \cdot b^3$								-				

б) Заполните таблицу распределения значений одночлена $2a^2 \cdot b^3$:

Значение 2 <i>a</i> ² · <i>b</i> ³	0	2	8	16	64	Bcero: 5
Сколько раз встретилось						Сумма:

в) Заполните таблицу распределения частот значений одночлена $2a^2 \cdot b^3$:

Значение $2a^2 \cdot b^3$	0	2	8	16	64	Beero: 5
Частота значения						Сумма:

- 28.5 **О** а) Сколько различных одночленов вида $x^n \cdot y^k \cdot z^m$ можно получить, подставляя в качестве показателей n, k, m числа 1, 2, 3, 4, 5?
 - б) Сколько среди них будет одночленов, у которых все три показателя будут нечётны?
 - в) Сколько среди них будет одночленов, у которых все три показателя будут иметь разную чётность?
 - г) Сколько среди них будет одночленов, которые можно представить как квадрат другого одночлена?

МНОГОЧЛЕНЫ. **АРИФМЕТИЧЕСКИЕ** ОПЕРАЦИИ НАД МНОГОЧЛЕНАМИ

§ 29

основные понятия

Установите, какие из данных выражений являются многочлена-MH:

a)
$$3a + 4b$$
:

6)
$$5x^2 - 3y^2$$

a)
$$3a + 4b$$
; 6) $5x^2 - 3y^2$; B) $5(5x^2 - 12y^2)$; $\Gamma(a + 1)(b - 2)$.

$$r)(a+1)(b-2)$$

a)
$$5x^2 - 6x^2 + \frac{1}{x^2}$$
;

a)
$$5x^2 - 6x^2 + \frac{1}{x}$$
; B) $\frac{b^2}{4} + 12z^2 - \frac{ab}{5}$;

6)
$$\frac{3a^2b}{4ab^2}$$
;

r)
$$0.3p^2 + 13p - 1$$
.

29.3

a)
$$3x^2 + 5y + \frac{7}{c}$$
; B) $9x^3 - 4y^2 - 5$;

B)
$$9x^3 - 4y^2 - 5$$

6)
$$\frac{a^8}{4} - \frac{b^6}{5} + \frac{c^4}{7} + \frac{d^3}{9}$$
; r) $\frac{10}{5^5} + \frac{2}{5^3} + \frac{5}{5^2} - \frac{11}{5^3}$.

r)
$$\frac{10}{z^5} + \frac{2}{z^3} + \frac{5}{z^2} - \frac{11}{z}$$
.

29.4

Даны одночлены: 5a; -4ab; $8a^2$; 12a; -2.5ab; $-a^2$. Составьте из них:

- а) многочлен, в котором нет подобных членов;
- б) многочлен, в котором есть подобные члены;
- в) два многочлена, в каждом из которых нет подобных членов, используя при этом все данные одночлены;
- г) выражения, которые не являются многочленами.

- $0.5x^2y$; $-xy^2$; 12xy; $-3x^2y$; -0.2xy; $4xy^2$. Даны одночлены: 29.5 Составьте из них:
 - а) многочлен, в котором нет подобных членов;
 - б) многочлен, в котором есть подобные члены;
 - в) два многочлена, в каждом из которых нет подобных членов, используя при этом все данные одночлены;
 - г) выражения, которые не являются многочленами.

Приведите многочлен к стандартному виду:

a)
$$5r^2 - 3r^2 - r^2$$

a)
$$5x^2 - 3x^2 - x^2$$
; b) $1.2c^5 + 2.8c^5 - 4c^5$;

6)
$$7y^3 + y^3 + 12y^3$$
;

6)
$$7y^3 + y^3 + 12y^3$$
; r) $\frac{1}{2}d^n - \frac{1}{3}d^n + \frac{1}{6}d^n$.

29.7

a)
$$5x^2 - 3xy - 2xy + x^2$$
;

6)
$$3t^2 - 5t^2 - 11t - 3t^2 + 5t + 11$$
:

B)
$$7a^2b - 5a^2b + ab^2 + 2ab^2$$
;

r)
$$z^3 + 2z^2 + z^3 - 4z - z^2$$
.

29.8

a)
$$4b^2 + a^2 + 6ab - 11b^2 - 6ab$$
;

6)
$$3a^2x + 3ax^2 + 5a^3 - 3ax^2 - 8a^2x - 10a^3$$
;

B)
$$9x^3 - 8xy - 6y^2 - 9x^3 - xy$$
:

$$\Gamma) m^4 - 3m^3n + n^2m^2 - m^2n^2.$$

29.9

- a) mmmm nnnn;
- 6) $3s \cdot 2r + 2rs + 4r \cdot 8s$;
- B) papa apap;
- r) $12m \cdot 2n 3m \cdot 4n 7m \cdot 8n$.

29.10

a)
$$4p^3 \cdot 2p + 3p^2 \cdot 4p + 2p^2 \cdot 2p^2 - 2p^3 \cdot 4$$
;

6)
$$x \cdot \frac{2}{3}x + \frac{1}{4}x + 0.8x - x \cdot \frac{1}{6}x - x$$
;

B)
$$y \cdot 2y - 3y - y^2 - 5 + 2yy - y \cdot 5 + y \cdot 7y^2$$
;

r)
$$\frac{5}{6}aa + \frac{1}{3}a - 0,6aa + a \cdot 0,1a$$
.

29.11

a)
$$2x \cdot 4y - 3x \cdot 2y - 0, 2x \cdot 5y + y \cdot 5x - 5xy + 8xy;$$

6)
$$xpxx - p \cdot 3px - p \cdot 4x^3 + 7pxp$$
;

B)
$$15r^3s - 5rsr^2 - 3srrr + 2r^2sr$$
;

r)
$$7xax + a \cdot 2ax + x \cdot 9xa - 8axa$$
.

Вместо символа * в данном многочлене поставьте такой одночлен, чтобы получившееся выражение после приведения подобных членов не содержало переменной:

a)
$$1\frac{1}{2}a + 2\frac{1}{3}a - 15 + 2,4a - *;$$

6)
$$4x - 1.5x + 7 + 1\frac{1}{7}x + *$$

29.13 C

Приведите многочлен к стандартному виду:

a)
$$c \cdot \frac{1}{2}c - 0.1c^5 - c^3 + cc^2 \cdot 2c^2 - c \cdot \frac{1}{8}c + ccc;$$

6)
$$\frac{1}{9}mm - m \cdot \frac{1}{2}mm + 0.5m + mm \cdot \frac{1}{8}m - \frac{1}{3}m^2 + \frac{1}{2}m;$$

B)
$$aba + aa - a \cdot 2ab + bab - 2ba \cdot 2b - 6a \cdot 2b^2 - aa$$
;

r)
$$y \cdot 2yy - y \cdot 5xy + x \cdot 3xy - xy \cdot 6y + x \cdot 12xy - y^2$$
.

29.14

Приведите многочлен к стандартному виду и запишите его в порядке убывания степеней переменной:

a)
$$15p + 18p^2 + 4 - 12p + 3p^2 - p^4$$
;

6)
$$1,4x^2-4,1x^3+x-3,1+x+1,3x^3$$
;

B)
$$\frac{1}{4}a + \frac{3}{5}a^2 - \frac{3}{4}a^2 + \frac{7}{8} - \frac{2}{3}a$$
;

r)
$$0.2 y^4 - 3.5y - 1.2y^4 - 1 + 3.5y$$
.

29.15

Приведите многочлен к стандартному виду, укажите его степень и свободный член:

a)
$$4x \cdot \frac{1}{2}x^3 - 3.5x^2 \cdot 6 + \frac{1}{5}x^2 \cdot 3x^3 - x^2(-2x) + 2 \cdot (-1.5);$$

6)
$$5a^2 \cdot 1, 5a^4 - \frac{1}{2}a \cdot 6a^2 + a^3 \cdot (-4a^2) - a^2 \cdot (-a^2) - 12 \cdot (-3)$$
.

29.16

Приведите многочлен к стандартному виду и найдите его значение:

a)
$$a^3b + a^2b - 3ab^2 + 2a^2b + 2ab^2$$
 при $a = -1$, $b = 2$;

б)
$$\frac{1}{2}x - \frac{1}{3}y^2 + 0,3x - x + \frac{5}{9}y^2$$
 при $x = 5, y = \frac{3}{4}$;

в)
$$m^4 - 3m^3n + m^2n^2 - m^3n - 4m^2n^2$$
 при $m = -\frac{1}{2}$, $n = \frac{1}{3}$;

г)
$$6p^2q - 5pq^2 + 5p^3 + 2pq^2 - 8p^3 - 3p^2q$$
 при $p = -2$, $q = 0.5$.

29.17

Дан многочлен $p(x) = 7x^3 - x + 2x^2 - 5x^3 + x^2 - x - 3$.

а) Приведите многочлен
$$p(x)$$
 к стандартному виду.

б) Вычислите
$$p(1)$$
, $p(-1)$, $p(2)$, $p\left(\frac{1}{2}\right)$.

29.18 О Дан многочлен
$$p(y) = 9y^4 + 3y^2 - 2y^3 - y - 8y^4 - 3y^2 + 2$$
.

- а) Приведите многочлен p(y) к стандартному виду.
- б) Вычислите p(1), p(-1), p(2), $p(\frac{1}{2})$.

- a) $x^3 + 2x^2 + 7x + 8x x^3 x^2 x^2$;
- 6) $0.5y^3 + 2.7y^2 + 3.5y + 6.5y 0.5y^3 2y^2 0.7y^2$;
- B) $3z^4 z^2 + 4z + z + z^2 2z^4 z^4 + 8$;
- r) $6p^3 p^2 + 4p^3 + p^2 10p^3 3p + 19$.

29.20 o a) Дан многочлен
$$3a + 11$$
. Полагая $a = 5x + 4$, составьте новый многочлен и приведите его к стандартному виду.

б) Дан многочлен 14 - 8a. Полагая $a = 3x^2 - 4x + 2$, составьте новый многочлен и приведите его к стандартному виду.

29.21 О Приведите многочлен к стандартному виду и запишите его в порядке убывания степеней переменной:

- a) $12m \cdot 0.2m^2 + 3.5m \cdot 2m 27 + 4.5m^2 \cdot 0.2m 15m$;
- 6) $3.6k \cdot 5k^3 0.4k^2 \cdot 7k + 1.4k^3 10k^2 \cdot 2k + 15k \cdot 0.5k^2$;
- B) $9a^3 \cdot 0.3a 12a \cdot 0.4a^2 + 7a \cdot 0.2a^3 + 1.7a^2 \cdot (-3a) 13a \cdot 0.5a$;
- r) $0.5b \cdot 4b^2 5b \cdot 0.3b 3b^2 \cdot (-0.2b) + 14b^2 \cdot 0.5 25b \cdot 0.3b^2$.

- а) Приведите многочлен p(a; b) к стандартному виду.
- б) Вычислите p(1; 2), p(1; -1), p(2; 2), p(-1; 2).

29.23 О Дан многочлен
$$p(a; b) = a^3 + 5a^2b + 2ab^2 + b^3 + ab^2 - 2a^2b$$
.

- а) Приведите многочлен p(a; b) к стандартному виду.
- б) Вычислите p(1; 1), p(-1; 1), p(1; -2), p(-1; -2).

29.24 О Приведите многочлен
$$p(x)$$
 к стандартному виду и найдите, при каких значениях переменной $p(x) = 1$:

- a) $0.6x^3 + 7.2x^2 + 0.4x 5x^2 + 0.4x^3 2.2x^2 0.4x$:
- 6) $3x^4 x^2 + 3x + x + x^2 2x^4 4x + 1$;
- B) $4.6x^3 x^2 + 4.4x^3 + 0.2x + x^2 + 1.7x x^3 1.9x$;
- r) $2x^3 + 3x^2 0.1x 4x^2 1.8x^3 + 0.1x + 2x^2 0.2x^3 3$.

- a) 5a 13 + 8a 7a + 25 + *;
- 6) 7b 15 + 10a 2a + 13 *;
- B) 12a 23 + 2a 3a + b + *;
- r) $8a^2 7a^2 4 + *$.

- Вместо символа * поставьте такой одночлен, чтобы полученный 29.26многочлен стандартного вида не содержал членов, подобных a^2 :
 - a) $a^2 + 2a^2 b^2 3c + *$:

к стандартному виду.

- 6) $3ax^2 5x^3 + 4a^2 + 8x^2a 5 + 11a^2 + *$
- B) $2x^2 + 3ax 9a^2 + 8x^2 5ax + 8a^2 + *$;
- r) $2y^2 5ay + a^2 + 7y^2 + 3ay 5a^2 + *$
- а) Дан многочлен p(x; y) = 7x + 4y 11. 29.27 Считая, что $y = 3x^3 - 2x + 5$, преобразуйте p(x; y) так, чтобы получился многочлен от одной переменной х, и приведите его
 - б) Дан многочлен p(a; b) = 13a + 6b 7. Считая, что $b = 4 - a^2 + 3a$, преобразуйте p(a; b) так, чтобы получился многочлен от одной переменной а, и приведите его к стандартному виду.
- а) В выражении $2a^2 + 4b 12$ замените переменную b многочле-29.28 ном $2a^2 - 4a + 1$ и приведите получившийся многочлен к стандартному виду.
 - б) В выражении $3x^3 + 2y + 4$ замените переменную y многочленом $3x^3 + x - 5$ и приведите получившийся многочлен к стандартному виду.
- Пусть x = 3a + 12, y = 13 a, z = 5 + 4a. Составьте выражение и 29.29 приведите его к многочлену стандартного вида: a) x + y + z; B) y - x + z;
 - 6) x y + z; r) z x y.
- **29.30** Пусть $a = 3x^2 + 4x + 8$, $b = 1, 2 2x^2 7x$, $c = 12, 5, x^2 3, 5x + 2$ + 21,8. Составьте выражение и приведите его к многочлену стандартного вида: a) a + b + c; b) a - b + c; b) b - a - c; r) c - b - a.
- 29.31 О Докажите, что p(x; y) = 0, если:
 - a) $p(x; y) = 25x^2 30xy + 9y^2 10x + 6y \text{ if } y = \frac{5}{2}x;$
 - 6) $p(x; y) = 4x^2 28xy + 49y^2 6x + 21y \text{ if } x = 3.5y$.
- Пусть $k = 5a^3 + 4a^2b + 8ab^2 24b^3$, $l = 7a^3 13a^2b 4ab^2 + 17b^3$, 29.32 $m = -12a^3 + 9a^2b - 4ab^2 + 15b^3$. Составьте выражение и приведите его к многочлену стандартного вида: B) m - l - k; r) l - k + m.
 - a) k + l + m; б) l + k - m;

29.33 Значение многочлена ax + by + cz при x = 1, y = 2, z = -3 равно 2,5.

Найдите значение многочлена ax + by - cz при $x = \frac{1}{24}, \ y = \frac{1}{12},$ $z = \frac{1}{9}.$

29.34 Найдите *p*(*x*), если:

a) p(x-2) = 2x + 5; 6) p(x+3) = 8x - 7.

29.35 Найдите многочлен p(x), если известно, что из данных ниже четырёх утверждений три истинны, а одно ложно:

1) $p(x) = x^3 + 2x$ или p(x) = 5x - 2;

- 2) p(1) = 3, p(-2) = -12;
- 3) сумма коэффициентов многочлена p(x) равна 3;
- 4) p(x) многочлен третьей степени.

§30

СЛОЖЕНИЕ И ВЫЧИТАНИЕ МНОГОЧЛЕНОВ

Рассмотрите примеры 1-2 в § 30 учебника.

1ET

- 30.1 Найдите $p(a) = p_1(a) + p_2(a)$, если:
 - a) $p_1(a) = 2a + 5$; $p_2(a) = 3a 7$;
 - 6) $p_1(a) = 7 2a;$ $p_2(a) = -1 5a;$
 - B) $p_1(a) = 3a 4$; $p_2(a) = 11 3a$;
 - r) $p_1(a) = -4 3a$; $p_2(a) = 7 8a$.
- 30.2 Найдите $p(x) = p_1(x) + p_2(x)$, если:
 - a) $p_1(x) = 2x^3 + 5$; $p_2(x) = 3x^3 + 7$;
 - 6) $p_1(x) = 4x^5 + 2x + 1$; $p_2(x) = x^5 + x 2$;
 - B) $p_1(x) = 6x^2 4$; $p_2(x) = 5x^2 10$;
 - r) $p_1(x) = x^{11} + x^6 3$; $p_2(x) = 2x^{11} + 3x^6 + 1$.
- - a) $p_1(y) = 2y^3 + 8y 11$; $p_2(y) = 3y^3 6y + 3$;
 - 6) $p_1(y) = 4y^4 + 4y^2 13$; $p_2(y) = 4y^4 4y^2 + 13$;
 - B) $p_1(y) = y^3 y + 7$; $p_2(y) = y^3 + 5y + 11$;
 - r) $p_1(y) = 15 7y^2$; $p_2(y) = y^3 y^2 15$.

Найдите $p(a; b) = p_1(a; b) + p_2(a; b)$, если: 30.4

- a) $p_1(a; b) = a + 3b$; $p_2(a; b) = 3a 3b$;
- 6) $p_1(a; b) = 8a^3 + 3a^2b 5ab^2 + b^3$; $p_a(a;b) = 18a^3 - 3a^2b - 5ab^2 + 2b^3;$
- B) $p_1(a; b) = a^2 5ab 3b^2$; $p_2(a; b) = a^2 + b^2$;
- r) $p_1(a;b) = 10a^4 7a^3b a^2b^2 + 6$; $p_a(a;b) = 17a^4 - 10a^3b + a^2b^2 + 3.$

Пайдите $p(c; d) = p_s(c; d) - p_s(c; d)$, если: 30.5

- a) $p_{s}(c; d) = 3c^{2} + d$; $p_{s}(c; d) = 2c^{2} 3d$;
- 6) $p_1(c; d) = 5c^4 + 3c^2d; \quad p_2(c; d) = 2c^2 + 3c^2d + d^2;$
- B) $p_1(c; d) = 12c^2d 3cd^2 + 4$; $p_2(c; d) = 6c^2d 5cd^2 + 2c$;
- r) $p_1(c; d) = c^2 + 2cd + d^2$; $p_2(c; d) = 5c^2 6cd 7d^2$.

Рассмотрите пример 3 в § 30 учебника.

Даны три многочлена: $p_1(a) = 2a^3 + 3a^2 - a + 1$, 30.6

 $p_{a}(a) = 4a^{4} + 6a^{3} - 2a^{2} + 2a, \quad p_{a}(a) = 2a^{5} + 3a^{4} - a^{3} + a^{2}.$

Найдите:

- a) $p(a) = p_1(a) + p_2(a) + p_3(a)$;
- 6) $p(a) = p_1(a) p_2(a) + p_3(a)$;
- B) $p(a) = p_1(a) + p_2(a) p_3(a)$;
- r) $p(a) = p_1(a) p_2(a) p_3(a)$.

Даны три многочлена: $p_1(x; y) = 27x^3 - 27x^2y + 9xy^2 - y^3$, 30.7 $p_{0}(x; y) = 20x^{3} - 15x^{2}y + 4xy^{2} - 3y^{3},$

 $p_{a}(x; y) = 10x^{3} + 12x^{2}y - 5xy^{2} + y^{3}$.

Найдите:

- a) $p(x; y) = p_1(x; y) + p_2(x; y) + p_3(x; y)$;
- 6) $p(x; y) = p_1(x; y) p_2(x; y) + p_2(x; y);$
 - B) $p(x; y) = p_1(x; y) + p_2(x; y) p_3(x; y);$
 - r) $p(x; y) = p_1(x; y) p_2(x; y) p_3(x; y)$.

Пусть $p_1(a) = a^2 - 3a^3 + 1, 2, p_2(a) = 3a^3 - 2, 4a^2 - a$. Составьте мно-30.8 гочлен:

a) $p(a) = p_1(a) + 2p_2(a)$; 6) $p(a) = 3p_1(a) - p_2(a)$.

- 30.9
- Запишите во втором столбце такой многочлен, чтобы его сумма с многочленом из первого столбца была равна многочлену, записанному в третьем столбце:

4	
1 400	
4	١
1 400	ь
	7

a) $5x + 6$	9x + 7
б) $a^3 + 2a^2b + b^3$	$a^3 + 2a^2b + b^3$
B) $m^2 + 2mn + n^2$	$m^2 - 2mn + n^2$
r) $2c^2d + 3cd^2 - 8$	0

- 30.10 O Преобразуйте выражение в многочлен стандартного вида:
 - a) $6a^2 (2 (1,56a (a^2 + 0,36a)) + (5,5a^2 + 1,2a 1))$;
 - 6) $(a^2 + 2x^2) (5a^2 1.2ax + (2.8x^2 (1.5a^2 0.5ax + 1.8x^2)))$:
 - B) $12.5x^2 + y^2 (8x^2 5y^2 (-10x^2 + (5.5x^2 6y^2)))$;
 - r) $(y^3 + 3z^2) (y^3 6az + (2y^3 (3z^2 + 4az 1, 2y^3)))$.

Решите уравнение:

- 30.11 a) (5x-3)+(7x-4)=8-(15-11x);
 - 6) (4x + 3) (10x + 11) = 7 + (13 4x);
 - B) (7-10x)-(8-8x)+(10x+6)=-8:
 - r) (2x + 3) + (3x + 4) + (5x + 5) = 12 7x.

- 30.12 O a) $\frac{3}{4}y \left(\frac{5}{6}y 1,25\right) = 0,55;$ B) $\frac{3}{8}x \left(\frac{1}{3}x 2,4\right) = -0,4;$
 - 6) $\frac{3}{4}x (0.25x 3) = 1.2;$ r) $\frac{1}{2}x (2.5x 3) = 1.8.$

- - 6) $(y^3 + y) + (3 6y) (4 5y) = -2$;
 - B) $(x^2 7x 11) (5x^2 13x 18) = 16 4x^2$;
 - r) $(u^2 5u^5 19) (5u^2 6u^5 9) = 22 4u^2$.
- 30.14 O Турист был в пути 4 ч. За первый час он прошёл x км, а в каждый следующий час проходил на 0,5 км меньше, чем в предыдущий. Найдите путь, пройденный туристом:
 - а) за третий час;

- в) за первые два часа;
- б) за последние три часа; г) за всё время ходьбы.

- 30.15
- Известно, что $p(x) = p_1(x) + p_2(x) p_3(x)$, где $p_4(x) = 2x^4 + 3x^3 2x^2 + 2x^4 + 3x^4 2x^4 2x^4 + 3x^4 2x^4 2x^4$ +7x + 15, $p_3(x) = x^3 + x^2 - 8x + 1$, $p_3(x) = 2x^4 + 4x^3 - x^2 - x + 2$. Вычислите p(287,34).

- 30.16
- а) Докажите, что сумма пяти последовательных натуральных чётных чисел делится на 10.
- б) Докажите, что сумма шести последовательных натуральных нечётных чисел делится на 12.

§31

УМНОЖЕНИЕ МНОГОЧЛЕНА на одночлен

Преобразуйте выражение в многочлен стандартного вида:

31.1 a)
$$2x(x^2 + 5)$$

- a) $2x(x^2 + 5x + 3)$; b) $3y(y^3 3y 4)$; c) $-2xy(x^2 + 2xy y^2)$; r) $-5mn(m^3 + 3m^2n n^3)$.

31.2 a)
$$x^2y^2(x+y)$$
;

- 6) $-p^5q^8(p^3+3pq-q^4)$;
- B) $-c^3d^4(c^2-d^3)$;
- r) $r^7 s^{12} (r^{10} + 2rs s^5)$.
- a) $3x(x + y) 3x^2$; 31.3
- B) $5c(c^2-d^2)-5c^3$; r) $10m(m^5 + n^6) - 10m^6$.
- 6) $7a(a-b)-7a^2$:
- Преобразуйте выражение в многочлен стандартного вида: 31.4
 - a) 3x(x-5)-5x(x+3); B) 2a(a-b)+2b(a+b);

 - 6) 2y(x-y) + y(3y-2x); r) 3p(8c+1) 8c(3p-5).
- 31.5

Упростите выражение и найдите его значение:

- a) 5x(2x-3)-2.5x(4x-2) при x=-0.01;
- 6) 12(2-p) + 29p 9(p+1) при $p = \frac{1}{4}$;
- в) $5a(a^2-4a)-4a(a^2-5a)$ при a=-3;
- r) 3(3d-1)+7(2d+1) при $d=2\frac{4}{22}$.

Выполните действия:

- a) $14a \cdot \frac{a+2}{7} + 25a^2 \cdot \frac{4-3a}{5}$;
 - 6) $3k^2 \cdot \frac{5k^2-4}{0.1} + 5k \cdot \frac{7k^3-3k}{0.5}$;
 - B) $24b^3 \cdot \frac{b^2+b-1}{6} + 26b^2 \cdot \frac{b^3-3b^2+4}{13}$;
 - r) $8a \cdot \frac{13a^3 12a^2 + 5}{0.4} 9a^2 \cdot \frac{4a^2 + 12a 1}{0.3}$.

- a) $18a^2 \cdot \frac{a^2 3a + 1}{9} 2a \cdot \frac{a^3 3a^2 + a}{0.4} + a^4 3a^3 + a^2$;
 - 6) $12x \cdot \frac{x+y}{6} 27y \cdot \frac{2x-y}{9} y(y+1);$
 - B) $33c^3 \cdot \frac{c+1}{11} 10c \cdot \frac{c^3 5c^2 + c}{5} + c^4 3c$;
 - r) $28p^2 \cdot \frac{p^2 + 5p 1}{0.7} 3p \cdot \frac{p^3 + 5p^2 p}{0.1} + 2p^4 + 10p^3 2p^2$.
- Пусть $a = 3x^2 + 4x 8$, $b = 2x^2 7x + 12$, $c = 5x^2 + 3x 27$. По данному 31.8 ниже условию составьте выражение и преобразуйте его в многочлен стандартного вида, записанный по степеням убывания
 - переменной x: a) 2a + 3c - 4b;
 - 6) 7ax 12xb + 15xc 13:
 - B) 72xa 4b + 3xc + 4:
 - r) $0.1x^2a + 0.5xc 0.6x^3b 17$.
- Пусть $x = 3a^2 + 4$; y = 12a 13; $z = a^2 a + 1$; $k = 5a^3$; $l = 12a^2$; 31.9

По данному ниже условию составьте выражение и преобразуйте его в многочлен стандартного вида, записанный по степеням убывания переменной а:

- a) 2x + ky lz; B) kx + ly mz;
- 6) lx 3mu:
- r) mx lz + 4kx 14.

Решите уравнение:

- 31.10 O
- a) 3(x-1) 2(3-7x) = 2(x-2):
 - 6) 10(1-2x) = 5(2x-3) 3(11x-5);
 - B) 2(x+3)-3(2-7x)=2(x-2);
 - r) 5(3x-2) = 3(x+1) 2(x+2).
- 31.11 O a) $3x \frac{2x-1}{5} = \frac{3x-19}{5}$; B) $2x \frac{2x+3}{3} = \frac{x-6}{3}$;
- - 6) $\frac{8x-3}{7} \frac{3x+1}{10} = 2;$ r) $\frac{x+14}{5} \frac{6x+1}{7} = 2.$

- 31.12 O
- a) $6x(x + 2) 0.5(12x^2 7x) 31 = 0$; 6) $2x^3 - x(x^2 - 6) - 3(2x - 1) - 30 = 0$;
 - B) 12x(x-8)-4x(3x-5)=10-26x;

 - r) $8(x^2-5)-5x(x+2)+10(x+4)=0$.

31.13 • a)
$$\frac{2x-3}{3} + \frac{7x-13}{6} + \frac{5-2x}{2} = x-1;$$

6)
$$\frac{x-2}{5} + \frac{2x-5}{4} + \frac{4x-1}{20} = 4-x$$
;

B)
$$\frac{5x-4}{3} + \frac{3x-2}{6} + \frac{2x-1}{2} = 3x-2$$
;

r)
$$\frac{3-5x}{5} + \frac{3x-5}{3} + \frac{6x+7}{15} = 2x+1$$
.

6)
$$x^2(5x + 3) - 6x(x^2 - 4) = 3x(8 + x)$$
;

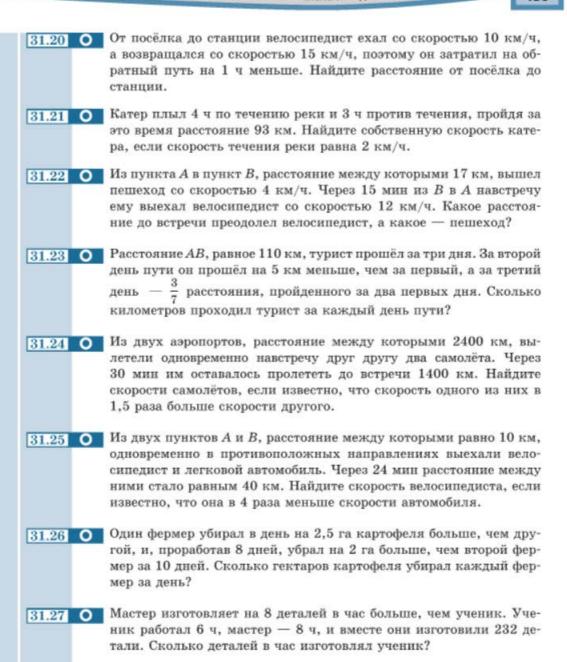
B)
$$x(12-x)-5=4x-x(10-(3-x))$$
:

r)
$$x(4x-11)-7x(x-1)=-2x(x+2)+1$$
.

31.15 **О** а) Докажите, что выражение
$$x(3x + 2) - x^2(x + 3) + (x^3 - 2x + 9)$$
 при любом значении переменной x принимает одно и то же значение.

- б) Докажите, что выражение $6x(x-3) 9(x^2 2x + 4)$ при любом значении переменной x принимает отрицательное значение.
- 31.16 При каких значениях переменных верно равенство:

a)
$$6x^2y(2xy-1) + 3x(2xy-5) = 2x(6x^2y^2-5) - 25$$
;


6)
$$3a(5ab^3-3)+5a^2b^2(3b-2a)=15a(2ab^3-1)+18$$
?

Pассмотрите пример 3 в § 31 учебника.

Дан многочлен p(x, y, z, t) = ax + by + cz + dt. Известно, что $p\left(\frac{1}{6}, \frac{1}{10}, \frac{1}{15}, \frac{1}{25}\right) = 3$. Вычислите p(25, 15, 10, 6).

Решите задачу, выделяя три этапа математического моделирования:

- 31.18 О Из пункта А в пункт В со скоростью 12 км/ч выехал велосипедист, а через полчаса вслед за ним выехал другой велосипедист, проезжавший в час 14 км и прибывший в пункт В одновременно с первым велосипедистом. Найдите расстояние между А и В.
- 31.19 О Лодка плыла 6 ч по течению реки, а затем 4 ч против течения. Найдите собственную скорость лодки, если известно, что скорость течения реки равна 3 км/ч, а всего лодкой пройдено расстояние 126 км.

В трёх посёлках 6000 жителей. Во втором посёлке вдвое больше

жителей, чем в первом, а в третьем — на 400 жителей меньше,

чем во втором. Сколько жителей в каждом посёлке?

31.28

- 31.29 О Во втором цехе завода рабочих в 1,5 раза меньше, чем в первом, и на 200 человек больше, чем в третьем. Всего в первом и третьем цехах работают 800 человек. Сколько рабочих во втором цехе?
- З1.30 О Длина прямоугольника на 8 см больше ширины. Если ширину увеличить в 2 раза, а длину уменьшить на 4 см, то площадь прямо-угольника увеличится на 25 см². Найдите стороны прямоугольника.
- В прямоугольном параллелепипеде длина и ширина одинаковые, а высота на 6 см больше длины. Если длину увеличить в 2 раза, высоту уменьшить на 3 см, а ширину оставить без изменения, то объём параллелепипеда увеличится на 64 см³. Найдите измерения данного параллелепипеда.
- 31.32 Из двух пунктов А и В, расстояние между которыми равно 2 км, одновременно в одном направлении отправились пешеход и велосипедист. Через 48 мин велосипедист опережал пешехода на 10 км. Найдите, какое расстояние будет между ними через 2 ч, если известно, что расстояние между ними всё время увеличивалось.
- Из двух пунктов А и В, расстояние между которыми равно 1 км, одновременно в одном направлении отправились пешеход и велосипедист. Через 45 мин расстояние между ними стало равным 7 км. Найдите, какое расстояние между ними будет через 1,5 ч, если известно, что расстояние между ними всё время увеличивалось.

§ 32 УМНОЖЕНИЕ МНОГОЧЛЕНА НА МНОГОЧЛЕН

Преобразуйте выражение в многочлен стандартного вида:

- 32.1 a) (x + 1)(x + 2); b) (b + 10)(b 4);
 - 6) (a-3)(a+8); r) (y-5)(y-9).
- 32.2 a) (x-5)(9-x); b) (y-10)(-y+6); 5) (-8-a)(b+2); r) (-7-b)(a-4).
- 32.3 a) (2a + 4)(5a + 6); b) (8c + 12)(3c 1); c) (7b 3)(8b + 4); r) (15d + 27)(-5d 9).

32.4 a)
$$(m^2 + n)(m + n)$$
; b) $(3y^2 + 5)(y - 6)$; 6) $(2x^2 - 1)(x + 3)$; r) $(7c^2 - 1)(c - 3)$.

32.5 a)
$$(3a + 5)(3a - 6) + 30$$
; b) $x(x - 3) + (x + 1)(x + 4)$; 6) $(8 - y)(8 + y) - (y^2 + 4)$; r) $(c + 2)c - (c + 3)(c - 3)$.

a)
$$0.3a(4a^2-3)(2a^2+5)$$
; B) $3p(2p+4) \cdot 2p(2p-3)$; 6) $1.5x(3x^2-5)(2x^2+3)$; r) $-0.5y(4-2y^2)(y^2+3)$.

a)
$$(3m^3 + 5)(3m^2 - 10)$$
; B) $(5k^4 + 2)(6k^2 - 1)$; 6) $(4n^5 - 1)(2n^3 + 3)$; r) $(6p^8 - 4)(2p^2 + 5)$.

32.8 a)
$$(a+2)(a^2-a-3);$$
 b) $(5b-1)(b^2-5b+1);$ 6) $(m-n+1)(m+n);$ r) $(c-2d)(c+2d-1).$

32.9 a)
$$(x^2 - xy + y^2)(x + y)$$
; B) $(n^2 + np + p^2)(n - p)$; 6) $(a + x)(a^2 + ax + x^2)$; r) $(c^2 - cd + d^2)(c - d)$.

a)
$$(2a + 3b)(4a^2 - 6ab + 9b^2)$$
;
b) $(5 - 2a + a^2)(4a^2 - 3a - 1)$;
e) $(5x - 2y)(25x^2 + 10xy + 4y^2)$;
f) $(m^2 - m + 2)(3m^2 + m - 2)$.

32.11 O a)
$$(2x - y)^2$$
; B) $(3x + 2y)^2$; C) $(x^2 + x + y)^2$; P) $(2x^2 - xy + y^2)^2$.

32.12 **O** a)
$$a(3a^2-4)(3a^2+4)$$
; B) $a^2(2a+3)(2a-3)$; b) $(a-5)(a+5)(a^2+25)$; c) $(a^2+16)(a-4)(a+4)$.

a)
$$(3.5p - 1.2k)(3.5p + 1.2k)$$
;
b) $(1.7s + 0.3t^2)(0.3t^2 - 1.7s)$;
c) $(2.4m^2 - 0.8n^2)(0.8n^2 + 2.4m^2)$;
c) $(1.3x^3 - 1.8y^2)(1.8y^2 + 1.3x^3)$.

a)
$$(a^2 + a - 1)(a^2 - a + 1)$$
;
b) $(m^2 + 2m - 1)(m^2 - 2m + 1)$;
c) $(2x^2 + 3x + 2)(-2x^2 + 3x - 2)$;
c) $(b^3 + 5b + 3)(-b^3 - 5b + 3)$.

32.15 O a)
$$(m-1)(m^3+m^2+m+1)$$
;
6) $(2-s)(16+8s+4s^2+2s^3+s^4)$;
B) $(x+y)(x^3-x^2y+xy^2-y^3)$;
r) $(a+3)(81-27a+9a^2-3a^3+a^4)$.

a)
$$(a-1)(a-2)-(a-5)(a+3)$$
 при $a=-8$;

б)
$$(a-3)(a+4)-(a+2)(a+5)$$
 при $a=-\frac{1}{6}$;

в)
$$(a-7)(a+4)-(a+3)(a-10)$$
 при $a=-0.15$;

r)
$$(a + 2)(a + 5) - (a + 3)(a + 4)$$
 при $a = -0.4$.

32.17 О Докажите, что выражение
$$p(x)$$
 при любых значениях x принимает одно и то же значение:

a)
$$p(x) = (2x + 1)(4x^2 - 2x + 1) - 8x^3$$
;

6)
$$p(x) = 27x^3 - (3x - 2)(9x^2 + 6x + 4)$$
.

32.18 О Докажите, что выражение
$$p(x; y)$$
 при любых значениях переменных принимает положительные значения:

a)
$$p(x; y) = (xy + 3)(2xy - 4) - 2(xy - 7);$$

6)
$$p(x; y) = (2x^2 - y)(3x + y^2) + 3(xy + 2) + y^3 - 6x^3$$
.

Решите уравнение:

32.19 **a**
$$12x^2 - (4x - 3)(3x + 1) = -2;$$

6)
$$(x + 1)(x + 2) - (x + 3)(x + 4) = 0$$
;

B)
$$10x^2 - (2x - 3)(5x - 1) = 31$$
;

r)
$$(x-2)(x-3)-(x+2)(x-5)=0$$
.

32.20 a)
$$(3x + 5)(4x - 1) = (6x - 3)(2x + 7)$$
;

$$6) (5x-1)(2-x) = (x-3)(2-5x);$$

B)
$$(5x + 1)(2x - 3) = (10x - 3)(x + 1)$$
;

r)
$$(7x-1)(x+5) = (3+7x)(x+3)$$
.

$$6) (x^2 - 3)(x + 2) + (x^2 + 3)(x - 2) = 4;$$

B)
$$(x-4)(x+3) + (x-2)(x+3) = 0$$
;

r)
$$(x^2-1)(x-4)+(x^2+1)(x+4)=6$$
.

Решите задачу, выделяя три этапа математического моделирования:

Длина прямоугольника на 20 м больше его ширины. Если длину прямоугольника уменьшить на 10 м, а ширину увеличить на 6 м, то его площадь увеличится на 12 м². Найдите стороны прямоугольника.

- 32.23 О Найдите четыре последовательных натуральных числа, если известно, что разность между произведением двух больших чисел и произведением двух меньших чисел равна 58.
- 32.24 О Периметр прямоугольника равен 60 см. Если длину прямоугольника увеличить на 10 см, а ширину уменьшить на 6 см, то площадь прямоугольника уменьшится на 32 см². Найдите площадь прямоугольника.
- 32.25 О Найдите три последовательных натуральных числа, если известно, что квадрат меньшего из них на 65 меньше произведения двух других чисел.
- 32.26 О Каждый из двух прямоугольников имеет периметр 122 см. Длина первого прямоугольника больше длины второго на 5 см, а площадь второго прямоугольника на 120 см² больше площади первого. Найдите площадь каждого прямоугольника.
- Периметр прямоугольника равен 240 см. Если длину прямоугольника уменьшить на 14 см, а ширину увеличить на 10 см, то его площадь увеличится на 4 см². Найдите стороны прямоугольника.
- Даны три числа, из которых каждое следующее на 3 больше предыдущего. Найдите эти числа, если известно, что произведение меньшего и большего на 54 меньше произведения большего и среднего.
- 32.29 О Даны три числа, из которых каждое следующее на 12 больше предыдущего. Найдите эти числа, если известно, что произведение двух меньших на 432 меньше произведения двух больших.
- 32.30 О Из четырёх чисел второе больше первого на 3, третье больше второго на 5, а четвёртое является суммой первого и второго. Найдите эти числа, если известно, что произведение первого и второго на 74,2 меньше разности между квадратом третьего числа и четвёртым числом.

Рассмотрите пример 2 в § 32 учебника.

158

- 32.31 Не приводя многочлен h(x) к стандартному виду, найдите степень многочлена, старший коэффициент, свободный член и сумму коэффициентов:
 - a) h(x) = p(x)q(x), rge $p(x) = 2x^5 + x^4 3x^3 + 2x^2 + 2$, $q(x) = x^7 3x^5 + 2x^3$;
 - б) $h(x) = (p(x))^2(q(x))^3$, где $p(x) = 2x^2 5x + 1$, $q(x) = x^2 3x 2$.

32.32

При каком натуральном значении n выполняется равенство: a) $(2^n - 1)(4^n + 2^n + 1) = 511$:

6) $(2^n-1)(16^n+8^n+4^n+2^n+1)=31$:

B) $(3^n + 2)(9^n - 2 \cdot 3^n + 4) = 737$;

r) $(3^n + 1)(81^n - 27^n + 9^n - 3^n + 1) = 244$?

153

Рассмотрите пример 3 в § 32 учебника.

32.33

- а) Натуральное число А при делении на 8 даёт в остатке 3, а натуральное число В при делении на 8 даёт в остатке 5. Какой остаток получится при делении числа АВ на 4?
- б) Натуральное число А при делении на 5 даёт в остатке 3, а натуральное число В при делении на 5 даёт в остатке 2. Какой остаток получится при делении на 5 числа (A + B)(A - B)?

633

ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ

Прочитайте п. 1 в § 33 учебника.

Преобразуйте квадрат двучлена в многочлен стандартного вида:

33.1

a) $(a + x)^2$;

б) $(b-y)^2$;

B) $(c+d)^2$; r) $(m-n)^2$.

33.2

a) $(x+1)^2$;

б) $(y-2)^2$;

B) $(a-5)^2$;

r) $(c + 8)^2$.

a) $(7 - a)^2$;

б) $(9+b)^2$:

B) $(4 + n)^2$:

r) $(12 - p)^2$.

33.3

a) $(-x+1)^2$; 6) $(-z-3)^2$; B) $(-n+8)^2$; r) $(-m-10)^2$.

33.4

a) $(2a+1)^2$; b) $(3c-2)^2$; b) $(6x-3)^2$; r) $(7y+6)^2$.

33.5 33.6

a) $(8x + 3y)^2$;

6) $(6m-4n)^2$; B) $(9p-2q)^2$; r) $(10z+3t)^2$.

33.7

a) $(-3a + 5x)^2$;

B) $(-3m + 4n)^2$;

б) $(-6y - 2z)^2$;

r) $(-12z - 3t)^2$.

33.8 a)
$$(0.2x - 0.5a)^2$$
; B) $\left(6a - \frac{1}{6}\right)^5$;

B)
$$\left(6a - \frac{1}{6}\right)^2$$
;

6)
$$\left(\frac{1}{4}m + 3n\right)^2$$
; r) $(10c + 0.1y)^2$.

r)
$$(10c + 0.1y)^2$$
.

33.9 a)
$$(x^2 + 1)^2$$

a)
$$(x^2+1)^2$$
; 6) $(y^2-6)^2$; B) $(q^2+8)^2$; r) $(p^2-10)^2$.

B)
$$(q^2 + 8)^2$$
;

r)
$$(p^2-10)^2$$
.

a)
$$(a^2 + 3x)^2$$
; 6) $(b^2 - 5y)^2$; B) $(r^2 + 4s)^2$; Γ) $(m^2 - 6n)^2$.

B)
$$(r^2 + 4s)^2$$
;

$$\Gamma$$
) $(m^2-6n)^2$.

33.11 a)
$$(c^2 + d^2)^2$$
; b) $(m^2 - n^3)^2$; b) $(z^2 + t^3)^2$; r) $(p^2 - q^2)^2$.

0)
$$(m^{*} - n^{*})^{*}$$

B)
$$(z^{*} + t^{*})$$

r)
$$(p^2 - q^2)^2$$

33.12 a)
$$(a^3 + 3b)^3$$

a)
$$(a^3 + 3b)^2$$
; B) $(5m^2 + 3n^2)^2$; 6) $(4x^2 - 3c)^2$; r) $(6p^2 - 8g^3)^2$.

33.13 a)
$$\left(2\frac{1}{2}a - 1\frac{1}{4}b\right)^2$$

a)
$$\left(2\frac{1}{3}a - 1\frac{1}{14}b\right)^2$$
; B) $\left(-1,2x - 4\frac{1}{6}y\right)^2$;

6)
$$\left(0.9x + 1\frac{13}{27}y\right)^2$$

6)
$$\left(0.9x + 1\frac{13}{27}y\right)^2$$
; r) $\left(-2.3a + 1\frac{2}{23}b\right)^2$.

Используя формулы для $(a \pm b)^2$, вычислите:

r)
$$32^2$$

(a)
$$\left(12\frac{1}{12}\right)^2$$

6)
$$\left(-7\frac{2}{7}\right)^2$$
;

B)
$$\left(7\frac{3}{14}\right)^2$$
;

a)
$$\left(12\frac{1}{12}\right)^2$$
; 6) $\left(-7\frac{2}{7}\right)^2$; b) $\left(7\frac{3}{14}\right)^2$; r) $\left(-13\frac{3}{13}\right)^2$.

a)
$$\left(12\frac{12}{12}\right)^2$$

6)
$$\left(14\frac{13}{15}\right)^2$$
;

a)
$$\left(12\frac{12}{13}\right)^2$$
; 6) $\left(14\frac{13}{15}\right)^2$; b) $\left(39\frac{39}{40}\right)^2$; r) $\left(15\frac{13}{16}\right)^2$.

r)
$$\left(15\frac{13}{16}\right)^2$$

Прочитайте п. 2 в § 33 учебника.

Выполните действия, используя соответствующую формулу сокращённого умножения:

33.20

a)
$$(a - b)(a + b)$$
; B) $(m - n)(m + n)$;

B)
$$(m-n)(m+n)$$

6)
$$(c-d)(c+d)$$
; r) $(p-q)(p+q)$.

$$r) (p-q)(p+q)$$

33.21

a) (x-1)(x+1);

B) (c-2)(c+2):

6) (9-a)(9+a):

r) (12-t)(12+t).

33.22

a) (3b-1)(3b+1); B) (10m-4)(10m+4); 6) (6x-2)(6x+2); r) (8a-1)(8a+1).

a) (4a - b)(b + 4a); 33.23 6) (x + 7)(7 - x);

B) (4b+1)(1-4b); r) (5m + 2)(2 - 5m).

r) (8m - 9n)(8m + 9n).

33.24

B) (13c - 11d)(13c + 11d); a) (3x - 5y)(3x + 5y); 6) (7a - 8b)(7a + 8b):

33.25

a) $(5x - 2y^2)(5x + 2y^2)$; B) $(10p^3 - 7q)(10p^3 + 7q)$; 6) $(2c - 3a^2)(3a^2 + 2c)$; r) $(8d + 6c^3)(6c^3 - 8d)$.

33.26

a) $(4x^2 - 2u^2)(4x^2 + 2u^2)$; 6) $(10a^3 + 5b^2)(10a^3 - 5b^2)$; B) $(3n^4 - m^4)(3n^4 + m^4)$; r) $(10m^8 + 8n^8)(10m^8 - 8n^8)$.

Используя формулу $(a + b)(a - b) = a^2 - b^2$, вычислите:

33.27

a) 69 · 71; 6) 31 · 29; B) 89 · 91; r) 99 · 101.

33.28

a) 58 · 62; 6) 82 · 78; b) 42 · 38; r) 18 · 22.

33.29

a) 0,49 · 0,51; в) 0,67 · 0,73; б) 0,78 · 0,82; г) 1,21 · 1,19.

33.30

a) $10\frac{1}{7} \cdot 9\frac{6}{7}$; 6) $10\frac{2}{5} \cdot 9.6$; B) $99\frac{2}{3} \cdot 100\frac{1}{3}$; r) $7\frac{4}{5} \cdot 8.2$.

33.31

Вычислите наиболее рациональным способом:

a) $\frac{910}{137^2 - 123^2}$; 6) $\frac{274^2 - 34^2}{960}$; B) $\frac{53^2 - 27^2}{79^2 - 51^2}$; Γ) $\frac{14400}{324^2 - 26^2}$.

158

Прочитайте п. 3 в § 33 учебника.

33.32

Выполните действия, используя соответствующую формулу сокращённого умножения: a) $(x-1)(x^2+x+1)$; B) $(x-2)(x^2+2x+4)$;

- 6) $(x+3)(x^2-3x+9)$; r) $(x+4)(x^2-4x+16)$.

a)
$$(5m + 3n)(25m^2 - 15mn + 9n^2)$$
;

6)
$$(2a-3x)(4a^2+6ax+9x^2)$$
;

B)
$$(3x + 4y)(9x^2 - 12xy + 16y^2)$$
;

r)
$$(4x - 5y)(16x^2 + 20xy + 25y^2)$$
.

Преобразуйте выражение в многочлен стандартного вида:

33.34 a)
$$3(x-y)^2$$
; b) $-c(3a+c)^2$; b) $-6(5m-n)^2$; r) $b(1+2b)^2$.

a)
$$a^2 + (3a - b)^2$$
; B) $(5c + 7d)^2 - 70cd$; 6) $9p^2 - (q - 3p)^2$; P) $(8m - n)^2 - 64m^2$.

33.36 a)
$$(a-4)^2 + a(a+8)$$
; b) $(y-5)^2 - (y-2)$;

a)
$$(a-4)^2 + a(a+8)$$
; B) $(y-5)^2 - (y-2)$; 6) $(x-7)x + (x+3)^2$; r) $b(b+4) - (b+2)^2$.

33.37 a)
$$(3a - b)(3a + b) + b^2;$$

5) $9x^2 - (y + 4x)(y - 4x);$
B) $(5c - 6d)(5c + 6d) - 25c^2;$
F) $(7m - 10n)(7m + 10n) - 100n^2.$

33.38 a)
$$2(a-2)(a+2)$$
; b) $5c(c+3)(c-3)$; 6) $x(x+4)(x-4)$; r) $7d^2(d-1)(d+1)$.

33.39 a)
$$(a-c)(a+c) - (a-2c)^2$$
;
6) $(x-4)(x+4) - (x+8)(x-8)$;
B) $(3b-1)(3b+1) - (b-5)(b+5)$;
r) $(m+3n)^2 + (m+3n)(m-3n)$.

a)
$$(b-5)(b+5)(b^2+25)$$
; B) $(a-2)(a+2)(a^2+4)$; 6) $(3-y)(3+y)(9+y^2)$; r) $(c^2-1)(c^2+1)(c^4+1)$.

Прочитайте п. 4 в § 33 учебника.

Преобразуйте выражение в многочлен стандартного вида:

33.41 • a)
$$(x-1)^3$$
; 6) $(2a+3b)^3$; B) $(2y+5)^3$; r) $(3m-4n)^3$.

33.42 • a)
$$(0.5a^2 + 2b)^3$$
; 6) $(3xy - \frac{1}{3}x^2y^2)^3$.

Докажите, что
$$(2a-b)(2a+b)+(b-c)(b+c)+(c-2a)(c+2a)=0.$$

a)
$$(5m-2)(5m+2)-(5m-4)^2-40m$$
;
b) $(3b+2)^2+(7+3b)(7-3b)-12b$.

Упростите выражение и найдите его значение:

а)
$$(a+3)^2 - (a-2)(a+2)$$
 при $a=-3,5$;
б) $(x-3)^2 - (x+3)(x-3)$ при $x=-0,1$;
в) $(m+3)^2 - (m-9)(m+9)$ при $m=-0,5$;
г) $(c+2)^2 - (c+4)(c-4)$ при $c=\frac{1}{4}$.

33.46 **О** a)
$$(5a-10)^2-(3a-8)^2+132a$$
 при $a=-6$; 6) $(3p-8)^2+(4p+6)^2+100p$ при $p=-2$; 8) $(5b-3)^2+(12b-4)^2-4b$ при $b=-1$; г) $(13-5m)^2-(12-4m)^2+4m$ при $m=-\frac{2}{3}$.

33.47 О а)
$$125 - (5 - 3x)(25 + 15x + 9x^2)$$
 при $x = -\frac{4}{3}$;
б) $25 - (2 - 3a)(4 + 6a + 9a^2)$ при $a = -\frac{1}{3}$;
в) $127 + (5c - 3)(25c^2 + 15c + 9)$ при $c = -1\frac{1}{5}$;

г)
$$64 - (4 - 3a)(16 + 12a + 9a^2)$$
 при $a = -\frac{2}{3}$.

Преобразуйте выражение в многочлен стандартного вида:

33.48 O a)
$$(10x^2 - 3xy^3)^2$$
; B) $(0,6b^3 - 5b^2c^4)^2$; c) $(8p^3 + 5p^2q)^2$; r) $(3z^7 + 0,5z^3t)^2$.

33.49 O a) $(20x^3z + 0,03z^2)^2$; B) $(0,15k^4n^3 - 10n^4)^2$; 6) $\left(\frac{3}{8}n^3 + 4mn^2\right)^2$; r) $\left(6a^2 - \frac{1}{3}ab\right)^2$.

33.50 a)
$$(x^n - 2^3)(x^n + 2^3)$$
; B) $(c^n - d^{3n})(c^n + d^{3n})$; c) $(a^{2n} + b^n)(a^{2n} - b^n)$; r) $(a^{n+1} - b^{n-1})(a^{n+1} + b^{n-1})$.

a)
$$(3x^2 - 2)(9x^4 + 6x^2 + 4)$$
;
6) $(5x^2 + 3)(25x^4 - 15x^2 + 9)$;
B) $(8b^2 + 3)(64b^4 - 24b^2 + 9)$;
r) $(7a^2 - 1)(49a^4 + 7a^2 + 1)$.

a)
$$(x-2)^2(x+2)^2$$
; B) $(m-6)^2(m+6)^2$; 6) $(y-4)^2(y+4)$; r) $(n-7)^2(7+n)$.

a)
$$(x-y)(x+y)(x^2+y^2)$$
;
b) $(3a-b)(3a+b)(9a^2+b^2)$;
B) $(p^3+q)(p^3-q)(p^6+q^2)$;
F) $(s^4+r^4)(s-r)(s+r)(s^2+r^2)$.

a)
$$(3x^2 + 4)^2 + (3x^2 - 4)^2 - 2(3x^2 + 4)(3x^2 - 4)$$
;
6) $p(p - 2c)(p + 2c) - (p - c)(p^2 + pc + c^2)$;
B) $(4a^3 + 5)^2 + (4a^3 - 1)^2 - 2(4a^3 + 5)(4a^3 - 1)$;
r) $m(2m - 1)^2 - 2(m + 1)(m^2 - m + 1)$.

33.55 a)
$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8);$$

b) $x^{32}-(x-1)(x+1)(x^2+1)(x^4+1)(x^8+1)(x^{16}+1).$

a)
$$(a + 2b)^3 + (a - 2b)(a^2 + 2ab + 4b^2) - 2a(a^2 + 6b^2);$$

b) $3(2x - y)^3 + 3(2x + y)(4x^2 - 2xy + y^2) - 6xy(3y - 6x).$

Замените символы * одночленами так, чтобы выполнялось равенство:

a)
$$(6a^5 + *)^2 = * + * + 25x^2;$$

b) $(10m^5 + *)^2 = * + * + 36m^4n^6;$
b) $(* - 4x^7)^2 = 25x^4y^2 - * + *;$
c) $(8a^3 - *)^2 = * - * + 49a^8b^6.$

33.58 a)
$$(* + 4d^4)^2 = * + 24c^2d^5 + *;$$

b) $(* - 8a^4)^2 = 81a^6b^2 - * + *;$
B) $(4p^2q^2 + *)^2 = * + * + 0.01q^8;$
c) $(8q^4t^3 - *)^2 = * - * + 0.16t^4.$

a)
$$(* + *)^2 = * + 70b^3c + 49c^2$$
;
6) $(* - *)^2 = 81x^2 - * + 100x^4y^6$;
B) $(* + *)^2 = * + 70x^3y^2 + *$;
r) $(* - *)^2 = * - 48c^5d^3 + *$.

33.60 O a)
$$(*-15a)(*+*) = 4c^2 - *;$$

$$6) (* + *)(* - 11c) = 81a^2 - *;$$

B)
$$\left(*-\frac{3}{4}x^3\right)(*+*)=0,25y^4-*$$
;

r)
$$(*-*)(*+0.4n^2) = 100m^6 - *$$
.

33.61 a)
$$(*-10z^2)(*+*) = 0.49x^6 - *;$$

6)
$$(*+*)(7p^6-*)=*-\frac{16}{121}q^4$$
;

B)
$$\left(1\frac{3}{4}x^7 - *\right)(* + *) = * - 64y^4z^{10};$$

r)
$$(*-*)^2 = *-60a^4x^2 + *$$
.

Рассмотрите пример 3 в § 33 учебника.

Решите уравнение:

33.62 a)
$$8x(1+2x)-(4x+3)(4x-3)=2x;$$

$$6) x - 3x(1 - 12x) = 11 - (5 - 6x)(6x + 5);$$

B)
$$(6x-1)(6x+1)-4x(9x+2)=-1$$
:

r)
$$(8-9x)x = -40 + (6-3x)(6+3x)$$
.

6)
$$9x(x+6)-(3x+1)^2=1$$
;

B)
$$x(x-1)-(x-5)^2=2$$
;

r)
$$16x(2-x)+(4x-5)^2=1$$
.

33.64 • a)
$$9x^2 - 1 - (3x - 2)^2 = 0$$
;

$$6) x + (5x + 2)^2 = 25(1 + x^2);$$

B)
$$(2x-3)^2-2x(4+2x)=11$$
;

r)
$$(4x-3)(3+4x)-2x(8x-1)=0$$
.

33.65 O a)
$$(x-1)(x+1) = 2(x-3)^2 - x^2$$
;

$$6) (2x + 3)^2 - 4(x - 1)(x + 1) = 49;$$

B)
$$3(x + 5)^2 - 4x^2 = (2 - x)(2 + x)$$
;

r)
$$(3x + 1)^2 - (3x - 2)(2 + 3x) = 17$$
.

33.66 O a)
$$(x-1)(x^2+x+1)=0$$
; B) $(x-2)(x^2+2x+4)=0$;

6)
$$(x+2)(x^2-2x+4)=7$$
; r) $(x+1)(x^2-x+1)=-7$.

- В прямоугольном параллелепипеде длина на 5 см больше ширины и на 5 см меньше высоты. Найдите измерения прямоугольного параллелепипеда, если площадь его поверхности равна 244 см².
- В прямоугольном параллелепипеде длина на 3 см больше ширины и на 3 см меньше высоты. Найдите измерения прямоугольного параллелепипеда, если площадь его поверхности равна 198 см².
- 33.69 О Если сторону квадрата увеличить на 7 см, то площадь квадрата увеличится на 301 см². Найдите периметр квадрата.
- 33.70 О а) Докажите, что разность квадратов двух последовательных чётных чисел делится на 4.
 - б) Докажите, что разность квадратов двух последовательных нечётных чисел делится на 8.
- 33.71 Известно, что числа A и B не кратны 3. Докажите, что $(A^2 B^2)$: 3 (напоминаем, что знак : означает «делится на»).

Рассмотрите примеры 2, 6, 10 в § 33 учебника.

156

- 33.72 Найдите значение числового выражения:
 - a) $(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)-2^{16}$;
 - 6) $3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}$.
- Докажите равенство $(3^2 + 2^2)(3^4 + 2^4)(3^8 + 2^8)(3^{16} + 2^{16}) = 0,2(3^{32} 2^{32}).$
- Вычислите наиболее рациональным способом: а) $1,72^3 - 0,72^3 - 3 \cdot 1,72 \cdot 0,72$; б) $0,505^3 + 3 \cdot 0,495 \cdot 0,505 + 0,495^3 + 48 \cdot 0,505 + 48 \cdot 0,495$.

Рассмотрите пример 12 в § 33 учебника.

160

- 33.75 Не пользуясь калькулятором, решите уравнение:
 - a) $x^2 79^2 = 159$; 6) $x^3 242 = 3^{12} 3^{10}$.
- 33.76 Найдите те значения переменных, при которых заданное выражение принимает наименьшее значение. Чему равно это наименьшее значение?
 - a) $(2x + 3y + 5)^2 + (x 4y 25)^4 3$;
 - 6) $y^2 8xy + (3x + 5y 46)^6 + 4(4x^2 + 1)$.

33.77

Найдите те значения переменных, при которых заданное выражение принимает наибольшее значение. Чему равно это наибольшее значение?

- a) $15 (x + 2y 1)^2 (3x + y 18)^4$:
- 6) $9(3-x^2)-(5x-3y+12)^6+y(6x-y)$.

33.78

Решите систему уравнений:

- a) $\begin{cases} (2x 5)^2 + (3y 2)^2 = 4x^2 + 9y^2 63, \\ 5x 3y = 17; \end{cases}$
- 6) $\begin{cases} (x+3)^2 + (2y+1)^2 = x^2 + 4y^2 + 16, \\ 3y 7x = 16. \end{cases}$

33.79

Найдите наибольшее значение выражения и укажите, при каких значениях переменных оно достигается:

- a) $\frac{18}{9x^2 12xy + 4y^2 + 9} + \frac{24}{|5x 3y 1| + 6}$;
- 6) $\frac{1}{49x^2 + 9y^2 2(21xy 1)} + \frac{25}{|5x 2y 1| + 10}$

33.80

Найдите натуральные значения х и у, при которых из четырёх приведённых ниже утверждений три верные и одно неверное:

- 1) x : 5y, 3) 2x + 5y = 75, 2) $25y^2 x^2 = 0$, 4) 3x 4y = 9.

§34

МЕТОД ВЫДЕЛЕНИЯ ПОЛНОГО КВАДРАТА

Рассмотрите примеры 1-2 в § 34 учебника.

34.1

Какой одночлен нужно прибавить к заданному двучлену, чтобы получился полный квадрат:

- a) $x^2 + 4x$:

- 6) $4a^2 + 9$; B) $4x^2 12xy$; F) $25a^2 + 16b^2$?

34.2

Найдите наименьшее значение многочлена p(x): a) $p(x) = x^2 - 10x + 5$; B) $p(x) = x^2 - 5x + 8$;

- 6) $p(x) = 2x^2 6x + 3$; $p(x) = 3x^2 + x$.

- Найдите наибольшее значение многочлена p(x): 34.3

 - a) $p(x) = 7 x^2 6x$; B) $p(x) = 10 3x x^2$;

 - 6) $p(x) = 5x 2x^2$: $p(x) = 1 + 3x 2x^2$.
- а) Найдите наименьшее значение выражения 34.4 (4x-3)(4x+3)-3y(8x-3y);
 - б) Найдите наибольшее значение выражения (5-3x)(5+3x)-5y(6x+5y).

Рассмотрите пример 3 в § 34 учебника.

- Найдите ту пару значений переменных, при которых многочлен 34.5 $p(x; y) = 3x^2 - 6xy + y^2 + 5x + 96y - 68$ принимает наименьшее значение, если известно, что x + 2y = 7. Чему равно это наименьшее значение?
- Найдите ту пару значений переменных, при которых многочлен 34.6 $p(x; y) = 12x + 4y + 84 - x^2 - 8xy + y^2$ принимает наибольшее значение, если известно, что 3x - y - 4 = 0. Чему равно это наибольшее значение?
- Найдите ту пару значений переменных, при которых многочлен 34.7 $p(x; y) = 2x^2 + 2xy + y^2 - 2x + 2$ принимает наименьшее значение. Чему равно это наименьшее значение?
- Найдите ту пару значений переменных, при которых многочлен 34.8 $p(x; y) = 5 + 2xy - (2x^2 + y^2) - 4x$ принимает наибольшее значение. Чему равно это наибольшее значение?
- Решите уравнение: 34.9 a) $(x + 2y)^2 + 4x + 5 - 4y - 4xy = 0$; $6) 12(ab+b-a)+13+(3a-2b)^2=0.$

Рассмотрите пример 4 в § 34 учебника.

- Докажите, что заданное неравенство выполняется при любых 34.10 O значениях х:

 - a) $x^2 12x + 37 > 0$; 6) $12x 12 4x^2 < 0$.

Докажите, что заданное неравенство выполняется при любых значениях переменных:

a)
$$13x^2 - 42xy + 49y^2 \ge 0$$
; 6) $-4x^2 + 20xy - 28y^2 \le 0$.

$$6) -4x^2 + 20xy - 28y^2 \le 0$$

a)
$$2x^2 + 6xy + 11y^2 \ge 0$$
; b) $4xy - 6x^2 - 3y^2 \le 0$.

б)
$$4xy - 6x^2 - 3y^2 ≤ 0$$

§ 35 ДЕЛЕНИЕ МНОГОЧЛЕНА на одночлен

Выполните деление многочлена на одночлен:

a)
$$(12a + 8) : 4$$
;

B)
$$(44y + 22) : 11;$$

r) $(-15 - 5y) : (-5).$

B)
$$(-m - mn) : m$$
;

6)
$$(x - xy) : (-x)$$
;

6) (54d + 36) : (-18);

r)
$$(-c + cd) : (-c)$$
.

a)
$$(a^2 + 3ab) : a;$$

B)
$$(c^2 - 2cd) : c$$
;

6)
$$(m^3 - m^2n)$$
 : m^2 ;

r)
$$(p^4 - p^3q) : p^3$$
.

0

гочлен:

a)
$$(4ab^2 + 3ab) : (ab);$$

B)
$$(-3.5m^2n - 0.2mn)$$
: (mn) ;

6)
$$(1,2cd^3-0,7cd):(cd);$$

r)
$$\left(-\frac{1}{2}xy + \frac{1}{2}x^2y\right)$$
: (xy) .

a)
$$(4x + 12y - 16) : (-4)$$

b) $(3x^2y - 4xy^2) : (5xy)$

O a)
$$(4x + 12y - 16) : (-4);$$
 B) $(2ab + 6a^2b^2 - 4b^2) : (-2b);$ 6) $(3x^2y - 4xy^2) : (5xy);$ F) $(-a^5b^3 + 3a^6b^2) : (4a^4b^2).$

Найдите значение алгебраического выражения:

а)
$$(18a^4 - 27a^3)$$
 : $(9a^2) - 10a^3$: $(5a)$ при $a = -8$;

б)
$$(36x^2y - 4xy^2)$$
: $(4xy) + y$ при $x = -\frac{1}{9}$; $y = 0,2745$.

35.7

Придумайте три одночлена, на которые делится данный мно-

a)
$$5x^2 - 6x^4 + 48x^6 - 12x^3$$
;

6)
$$14x^6 - 28x + 7x^5 + 84x^4 - 56x^8$$
:

B)
$$15a^2b^3 + 25a^4b^2 - 30a^6b^3 - 75a^4b^7$$
;

r)
$$45m^6n^2 + 30m^3n^5 + 60m^4n^3 - 90m^4n^5$$
.

- Установите, корректно ли задание: разделить многочлен $2x^3y^2$ + 35.8 $+3x^{2}y-5x^{4}y^{4}$ на одночлен A, если:

- a) A = xyz; b) $A = x^2y^2$; b) A = xy; r) $A = -x^2y$.
- 35.9 Выполните почленное деление числителя дроби на знаменатель:
 - a) $\frac{12a^8b^6 + 60a^6b^8}{4a^5b^5}$;
 - 6) $\frac{132n^3p^2-44n^2p^3+110n^2p^4}{22nn}$;
 - B) $\frac{15a^7x^9-45a^9x^7}{5a^6x^6}$;
 - r) $\frac{108k^4n^2 144k^3n^3 180k^2n^4}{36kn}$.
- 35.10 Установите, корректно ли предложенное задание, и если да, то выполните его:
 - a) $(7a^2 + 10a^3b) : a^4$; B) $(27a^3 81b^3) : (9a^3b^3)$;
 - r) $(42x^3y 63xy^3 + 14xy) : (7xy)$. 6) $(4x^2-3x):(-x^2)$;
- Запишите два одночлена, не являющихся подобными, на которые 35.11 делится данный многочлен:
 - a) $13k^8l^4 + 21k^4l^6 2k^2l^8 + 32k^9l^5$
 - 6) $18p^6q^3 + 27p^2q^4 63p^8q^5 72p^9q^7$;
 - B) $16c^6d^4 + 24c^5d^8 + 32c^9d^7 48c^2d^3$:
 - r) $36x^6y^5 48x^4y^8 + 84x^9y^3 144x^3y^4$.
- 35.12 Запишите пять одночленов, не являющихся подобными, на которые делится данный многочлен:
 - a) $4b^4c^5 b^4c^4 + 13b^2c^6$;
 - 6) $12x^3y^4 16x^2y^3 + 24x^2y^2$;
 - B) $5z^5m^7 25z^8m + 40z^{12}m^2$
 - r) $3.2k^2l^4 1.4k^3l^4 + 4.3kl^6$.
- Из данных одночленов выберите те, на которые делится многоч-35.13 лен $12x^2y^3z - 3xy^2z^2 + 4xy^2z^3$:
 - a) x^2yz ; $3x^2y^2z$; xy; xyz^4 ; x^3 ;
 - 6) xy^2z ; $6xy^4z$; 5z; 6xyz; 20xy;
 - B) y^2 ; 3; 142xyz; 15x; $24z^2$;
 - r) $4xy^2$; y^2z ; 8; 7xyz; $2xy^2z$.

Замените символы * одночленами так, чтобы выполнялось равенство:

35.14 a)
$$\frac{15a^4b - * + 20a^2b^3}{5a^2b} = * -7ab + *;$$

6)
$$\frac{*-24a^3x^4}{2} = 7a^2 - 8ax^3$$
;

B)
$$\frac{*-100a^2b^4+75ab^5}{25ab^3}=3a^2-*+*;$$

r)
$$\frac{57c^4d^3 - 38c^3d^2}{4} = 3cd^2 - *.$$

35.15 a)
$$\frac{42a^2x^4 - 21a^3x^3 + 72a^4x^2}{4a^2x^2} = * - * + 12a^2x;$$

6)
$$\frac{*-*+63a^nx^5}{*} = 2a^5x^3 - 3a^6x^2 + 4.5a^{n-3}x;$$

B)
$$\frac{30k^3p^3-175k^2p^4-*}{*}=3k^2-*-14p^2;$$

r)
$$\frac{45c^{10}d^3 + 54c^{n+2}d^7 - *}{*} = * + 3,6c^nd^5 - 2c^6d^8$$
.

- a) $3a^3 1,2ab$; $30a^4b 12ab^2$; B) $30a^3b^2 12ab$; $6a^3b^2 3ab^3$;
- 5) $5b^3 2b^4$; $15a^2b 4b$; r) $15a^4b^3 6a^2b^4$; $3a^2 1,2b$.

Выясните, какой из данных многочленов может быть частным от деления многочлена
$$42x^5y^4 + 56x^4y^2$$
 на некоторый одночлен. Найдите делитель, если он существует:

- a) $21x^4y^3 + 18x^3y^6$; $5,25xy^3 + 7y^6$; $6x^4y^3 + 8x^3y$;
- 6) $6x^3y^3 + 8x^2y^6$; $42xy + 56y^2$; $21x^2y^3 + 28xy$;
- B) $42x^2y + 56x$; $21x^3y^3 + 28x^3y$; $4,2x^4y^2 + 5,6x^3$;
- r) $5,25xy^3 + 14xy^6$; $10,5x^2y^3 + 14xy$; $6x^3y + 8x^2$.

§ 36 ПРОЦЕНТНЫЕ ЧАСТОТЫ

Результаты некоторого измерения распределены следующим образом:

Результат	-3	-1	2	4	7
Сколько раз встретился	2	6	4	3	2

36.1 O

- б) Найдите моду измерения. Сколько раз она встретилась в измерении?
- в) Найдите частоту моды и представьте её в виде обыкновенной дроби.
- г) Представьте частоту моды в виде десятичной дроби; в процентах.

36.2

- а) Найдите частоту результата 7. Представьте её в виде обыкновенной дроби; в виде десятичной дроби; в процентах.
- б) Найдите процентную частоту остальных результатов.
- в) Заполните таблицу распределения процентных частот:

Результат	-3	-1	2	4	7
Частота, %					

г) Перечислите те результаты, каждый из которых составляет менее 20 % общего числа результатов.

По итогам чемпионата Европы по футболу 2008 года на одном из футбольных сайтов определялся лучший игрок сборной России. Проголосовало 7000 человек. Результаты голосования занесены в таблицу:

Игрок	Количество голосов «за», %	Игрок	Количество голосов «за», %
Анюков	3,8	Колодин	8,4
Аршавин	31,8	Павлюченко	
Жирков		Семак	6,6
Зырянов	4,9	Семшов	1,3

- 36.3
- а) Сколько человек составили 0.1 % от числа проголосовавших?
- б) Каков (в процентах) результат голосования за игроков «Зенита» (Анюкова, Аршавина, Зырянова)?
- в) Результаты голосования за Жиркова и Павлюченко оказались одинаковыми. Чему (в процентах) они равны?
- г) Сколько человек проголосовало за Жиркова и Павлюченко вместе?
- 36.4
- а) Сколько человек проголосовало за Аршавина?
 - б) Сколько человек проголосовало за трёх лучших по итогам опроса игроков?
 - в) На сколько человек больше проголосовали за нападающих (Аршавина, Павлюченко), чем за защитников (Анюкова, Жиркова, Колодина)?
 - г) Заполните таблицу распределения числа голосовавших:

Игрок	Кол-во голосов «за»	Игрок	Кол-во голосов «за»
Анюков		Колодин	
Аршавин		Павлюченко	
Жирков		Семак	
Зырянов		Семшов	

Приведите к стандартному виду многочлены:

- 1) $x^2 + 2y^3(1 + 3xy)$;
- 5) $24x(x^2+2)(2+0.25x^2)$;
- 2) $(8a^3 + b)(1 + 0.5a)a^3$; 3) $b(d^2-3)^2(d^2+1)$;
- 6) $(8x^2y + z)(t 0.125z^2)$; 7) (1-3c)(1+c)(1-2c).
- 4) $(a-12b^4)(a-0.5b^4)$;
- В каждом многочлене подчеркните одночлен наибольшей степени.
- 36.5 (а) Запишите поочерёдно значения степеней подчёркнутых одночленов.
 - б) Составьте таблицу распределения степеней, найденных в пунк-
 - в) Составьте таблицу распределения процентных частот.
- 36.6
- а) Запишите поочерёдно коэффициенты подчёркнутых одночле-
- б) Составьте таблицу распределения коэффициентов, найденных в пункте а).
- в) Составьте таблицу распределения процентных частот.
- г) Постройте круговую диаграмму распределения процентных ча-CTOT.

Первый многочлен произвольно выбирают из многочленов 2a+1 или a^2-2a . Второй многочлен произвольно выбирают из многочленов $2a-a^2$, 3-2a или $1-a^2$.

36.7 О Найдите вероятность того, что степень суммы выбранных многочленов:

а) меньше 3; в) равна 2;

б) больше 2; г) равна нулю.

36.8 О Найдите вероятность того, что степень произведения выбранных многочленов:

а) меньше 5; в) равна 3;

б) меньше 1;г) равна 4.

36.9 О Представьте многочлены $9x - xb^2$, $25 - y^2$, $x^2 - 7x$, $z^3t - 4zt$, $xy + y^2$, $d^3 - d$, $klm^2 - klm$, ab + a + b + 1, $a^2b^2 - a^2 - b^2 + 1$, $x^2y + xy^2$, $(d^2 - 9)(16 - u^2)$, $x^2 - xy$ в виде произведения многочленов первой степени.

 а) Для каждого разложения найдите количество множителей. Составьте ряд полученных данных.

б) Заполните таблицу распределения числа множителей:

Число множителей	2	3	4
Сколько раз встретилось			

в) Заполните таблицу:

Число множителей	2	3	4
Частота, %			

 г) Постройте круговую диаграмму распределения частот в процентах.

ГЛАВА

РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ

§ 37

ЧТО ТАКОЕ РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ и зачем оно нужно

Решите уравнение:

a)
$$x(x+2)=0$$
;

B)
$$z(z-1,6)=0$$
;

$$6) (x + 1)(x + 4) = 0;$$

r)
$$(y+2)(y-6)=0$$
.

37.2

a)
$$m(m+1)(m+2) = 0$$
;

a)
$$m(m+1)(m+2) = 0$$
; B) $p(p+13)(p-17) = 0$;

$$6) n^2(n-3)(n-8) = 0$$

6)
$$n^2(n-3)(n-8)=0$$
; r) $q^3(q-21)(q-105)=0$.

37.3

a)
$$(2x + 3)(3x - 6) = 0$$
;

6)
$$(9y + 18)(12y - 4)(36y - 72) = 0$$
;

B)
$$(4a - 8)(6a - 10) = 0$$
;

r)
$$(4t-1)(8t-3)(12t-17)=0$$
.

37.4

Представьте многочлен p(x) в виде произведения многочлена и одночлена, если:

a)
$$p(x) = 2x^2 + x$$
;

$$6) p(x) = 6x^3 - 3x^2 + 3x;$$

B)
$$p(x) = 3x^3 - 12x$$
;

r)
$$p(x) = 5x^4 + 5x^3 - 10x^2$$
.

Представьте многочлен p(x) в виде произведения многочлена и 37.5 одночлена и найдите, при каких значениях х выполняется равенство p(x) = 0, если:

a)
$$p(x) = 5x^2 - 10x$$
;

B)
$$p(x) = 7x^2 + 21x$$
;

$$6) p(x) = x^2 + 6x^3$$
:

r)
$$p(x) = 4x^4 - x^3$$
.

Решите уравнение: 37.6

a)
$$x^2 - x = 0$$
;

B)
$$3x^2 - 7x = 0$$
:

6)
$$2x^2 + 4x = 0$$
; r) $x^2 = 4x$.

$$x^2 = 4x$$
.

Воспользовавшись формулой $a^2 - b^2 = (a - b)(a + b)$, представьте 37.7 многочлен p(x) в виде произведения двух многочленов, если:

a)
$$p(x) = x^2 - 4$$
;

B)
$$p(x) = x^2 - 9$$
;

6)
$$p(x) = 9 - 4x^2$$
;

r)
$$p(x) = 4 - 9x^2$$
.

Разложите многочлен p(x) на множители и найдите, при каких 37.8 значениях x выполняется равенство p(x) = 0, если:

a)
$$p(x) = x^2 - 1$$
;

B)
$$p(x) = x^2 - 49$$
;

$$6) p(x) = x^2 - 0.64;$$

6)
$$p(x) = x^2 - 0.64$$
; r) $p(x) = x^2 - \frac{25}{36}$.

Решите уравнение: 37.9

Решите уравнение:
a)
$$x^2 - 16 = 0$$
;
б) $y^2 - 25 = 0$;

B)
$$z^2 - 36 = 0$$
;

6)
$$y^2 - 25 = 0$$
;

r)
$$t^2 - 100 = 0$$
.

Вычислите наиболее рациональным способом:

a) $1.8 \cdot 0.6 + 1.8 \cdot 0.4$; B) $3.6 \cdot 1.3 - 0.3 \cdot 3.6$; 37.10

6) $1.5^2 - 1.5 \cdot 11.5$:

r) $1.3 \cdot 8.7 + 1.3^2$.

a) $53^2 - 43^2$: 37.11

6) $\left(6\frac{1}{3}\right)^2 - \left(5\frac{1}{3}\right)^2$;

r) $\left(7\frac{1}{2}\right)^2 - \left(3\frac{1}{2}\right)^2$.

Решите уравнение:

37.12 **a** a) $(x-1)^2(x+2)=0$; b) $(x-4)^2(x-3)=0$;

6) $(x^2-1)(x-3)=0$: r) $(x^2-4)(x+1)=0$.

37.13 O a) $x(x-2)(x^2+1)=0$; B) $x(x^2+4)(x+4)=0$;

6) $(x+6)(x^3-8)=0$:

r) $(x-5)(x^3+1)=0$.

37.14 O a) $0.25a^2 - 9 = 0$:

B) $4x^2 - 1.44 = 0$:

 $6) \ 0.04b^2 - 4 = 0;$

r) $0.25u^2 - 25 = 0$.

Вычислите наиболее рациональным способом:

37.15 O a)
$$\frac{910}{137^2 - 123^2}$$
;

B)
$$\frac{324^2 - 36^2}{1440}$$
;

6)
$$\frac{13,2 \cdot 9,8 + 13,2 \cdot 2,2}{24}$$
; r) $\frac{4,5 \cdot 3,1 - 4,5 \cdot 2,1}{0.1}$.

37.16 O a)
$$\frac{425^2 - 95^2}{215^2 - 115^2}$$
;

6)
$$\frac{1,27^2 + 2 \cdot 1,27 \cdot 0,73 + 0,73^2}{1,2^3 + 3 \cdot 1,2^2 \cdot 0.8 + 3 \cdot 1,2 \cdot 0.8^2 + 0.8^3}$$

Постройте график уравнения:

37.17 **(a)** a)
$$x(x-y)=0$$
;

B)
$$u(x + u) = 0$$
;

a)
$$x(x-y) = 0;$$

b) $y(x+y) = 0;$
c) $(x-4)(y+3) = 0;$
r) $(x+1)(y-2) = 0.$

$$r) (x + 1)(y - 2) = 0$$

37.18 O a)
$$(2x - y)(x + y) = 0;$$
 B) $(x - y)(3x + y) = 0;$ C (5) $(x + 2y)(x + y - 1) = 0;$ C (7) $(x - 3y)(x - y + 2) = 0.$

B)
$$(x-y)(3x+y)=0;$$

$$6) (x + 2y)(x + y - 1) = 0;$$

$$r) (x - 3y)(x - y + 2) = 0.$$

37.19 a)
$$2x^2 + xy = 0$$
;

B)
$$y^2 - 3xy = 0$$
;

6)
$$xy - 5y = 0$$
;

$$r) 4x + xy = 0.$$

838

ВЫНЕСЕНИЕ ОБЩЕГО МНОЖИТЕЛЯ за скобки

- Запишите три одночлена, на которые делится каждый из задан-38.1 ных одночленов:

 - a) $2m^2$, 2m, 4; B) $15ab^2$, 25ab, $30a^2b$; 6) 4x, 16x, 8xy; r) 56xyz, $42x^2z$, $14y^2z$.

Разложите многочлен на множители:

38.2 a)
$$3x + 3y$$

a)
$$3x + 3y$$
; 6) $5a - 5b$; B) $7a + 7y$; r) $8x - 8a$.

B)
$$7a + 7y$$
;

$$x - 8a$$
.

38.3 a)
$$3x + 6y$$

5)
$$5a - 15b$$
:

B)
$$7a + 14y$$

a)
$$3x + 6y$$
; 6) $5a - 15b$; B) $7a + 14y$; F) $8x - 32a$.

a)
$$8x + 12y$$
; B) $21a + 28y$;

6)
$$15a - 25b$$
; r) $24x - 32a$.

r)
$$24x - 32a$$
.

a)
$$2,4x + 7,2y$$
;

B)
$$0.01a + 0.03y$$

6)
$$1,8a-2,4b;$$

a)
$$2.4x + 7.2y$$
; B) $0.01a + 0.03y$; 6) $1.8a - 2.4b$; r) $1.25x - 1.75a$.

38.6 a)
$$\frac{1}{3}x + \frac{4}{3}y$$
; b) $\frac{8}{9}a - \frac{16}{27}b$; b) $\frac{18}{25}a + \frac{12}{35}y$; r) $\frac{12}{49}x - \frac{3}{28}y$.

6)
$$\frac{8}{9}a - \frac{16}{27}b$$

B)
$$\frac{18}{25}a + \frac{12}{35}y$$

r)
$$\frac{12}{49}x - \frac{3}{28}y$$

38.7 a)
$$3\frac{1}{5}x + 3\frac{2}{15}y$$

a)
$$3\frac{1}{5}x + 3\frac{2}{15}y$$
; 6) $4\frac{2}{7}a - 1\frac{1}{14}b$.

38.8 a)
$$3b^2 - 3b$$

B)
$$4c^2 - 12c^5$$
;

38.8 a)
$$3b^2 - 3b$$
;

6)
$$a^4 + 2a^2$$
; r) $8d^4 - 32d^2$.

38.9 a)
$$x^3 - 3x^2 - x$$
;

a)
$$x^3 - 3x^2 - x$$
;
b) $y^5 - 2y^4 + y^2$;
6) $2m^6 - 4m^3 + 6m$;
r) $9p^4 - 18p^2 - 27p$.

38.10 a)
$$ab - a^2b$$
;

B)
$$x^2y - xy^2$$
;

6)
$$-p^2q^2 - pq$$
;

r)
$$m^3n^2 - n^3m^2$$
,

38.11 a)
$$3x(a+b) + y(a+b)$$
;

B)
$$5p(r-s) + 6q(r-s)$$
;
r) $(c+2) - d(c+2)$.

38.12 a)
$$15c(a+b) + 8(b+a)$$
;

B)
$$n(2a + 1) + m(1 + 2a)$$
;

6)
$$4a(x + y) - 9b(y + x)$$
;

6) m(x-y) - (x-y);

r)
$$11p(c + 8d) - 9(8d + c)$$
.

38.13 a)
$$a(b-c)+3(c-b)$$
;

B)
$$6(m-n) + s(n-m)$$
;

6)
$$4(p-q) - a(q-p)$$
;

r)
$$7z(x-y) - 5(y-x)$$
.

38.14 a)
$$2z^5q^2 - 4z^3q + 6z^2q^3$$
;

B)
$$7a^4b^3 - 14a^3b^4 + 21a^2b^5$$
;

6)
$$xy^3 + 5x^2y^2 - 3x^2y$$
;

6)
$$xy^3 + 5x^2y^2 - 3x^2y$$
; r) $8x^3y^3 + 88x^2y^3 - 16x^3y^4$.

38.15 a)
$$15x^3y^2 + 10x^2y - 20x^2y^3$$
;

6)
$$12a^2b^4 - 36a^2b + 44abc$$
;
B) $195c^6p^5 - 91c^5p^6 + 221c^3p^{10}$;

r)
$$42a^4b - 48a^3b^2 - 78a^2b^3$$
.

Рассмотрите пример 4 в § 38 учебника.

Разложите многочлен на множители:

38.16 • a)
$$4c(4c-1) - 3(4c-1)^2$$
; B) $8m(m-3) - 3(m-3)^2$;

B)
$$8m(m-3)-3(m-3)^2$$
;

5)
$$(a+2)^3-4a(a+2)$$
; r) $(a-4)^3+8a(a-4)$.

38.17 O a)
$$a(2a-b)(a+b)-3a(a+b)^2$$
;

6)
$$m(3m + n^2)(m - n) + mn(m - n)^3$$
;

B)
$$5x^2(3x-8)+10x(3x-8)^2$$
;

r)
$$6d^2(2d-5)^2-12d^2(2d-5)(d+5)$$
.

Рассмотрите пример 5 в § 38 учебника.

Вычислите наиболее рациональным способом:

- a) $154^2 + 154 \cdot 46$; B) $167^2 167 \cdot 67$;
- 6) $0.2^3 + 0.2^2 \cdot 0.8$; r) $0.9^3 0.81 \cdot 2.9$.

- a) $0.756^2 0.241 \cdot 0.756 0.415 \cdot 0.756$;
- 6) $0.25^2 \cdot 2.4 + 0.25 \cdot 2.4^2 0.25 \cdot 2.4 \cdot 0.65$:
- B) 2.49 · 1.63 2.12 · 1.63 + 1.632:
- r) $0.16 \cdot 6.41 \cdot 1.25 0.16 \cdot 1.25^2 0.16^2 \cdot 1.25$.

- a) $\frac{1,9 \cdot 3,8 + 1,9 \cdot 1,2}{0,2^2 + 0,2 \cdot 1,7}$; B) $\frac{1,7 \cdot 1,6 + 1,7^2}{3.4 \cdot 8.7 3.4 \cdot 5.4}$;

 - 6) $\frac{1\frac{2}{3} \cdot \frac{5}{7} 4\frac{2}{3} \cdot \frac{5}{7}}{\left(1\frac{2}{7}\right)^2 1\frac{2}{7} \cdot \frac{2}{7}};$ r) $\frac{1\frac{5}{9} \cdot \frac{7}{15} \frac{7}{15} \cdot \frac{8}{9}}{\left(1\frac{2}{5}\right)^2 1\frac{2}{5} \cdot \frac{1}{15}}.$

Решите уравнение:

(a) $x^2 - 3x = 0$: 6) $a^2 + 10a = 0$: B) $y^2 - 5y = 0$; r) $b^2 + 20b = 0$.

- 38.22 **a** a) $0.45p^2 + 18p = 0$;
- B) $9m^2 + 0.27m = 0$:

- $6) -4q^2 + 3q = 0;$

r) $-7x^2 + 2x = 0$.

- 38.23
 - a) $x^3 + 2x^2 = 0$;

B) $x^3 - 3x^2 = 0$:

- a) $x^2 + 2x^2 = 0$; b) $(x 6)^2 + 2x(x 6) = 0$; c) $(x + 4)^2 3x(x + 4) = 0$.

Рассмотрите пример 7 в § 38 учебника.

38.24 O

Решите уравнение:

- a) $(x + 2)^2(x 5)^3 = (x 5)(x + 2)^4$;
- 6) $(2x + 1)^3(2x 3)^5 = (2x + 1)^5(2x 3)^3$.

Рассмотрите пример 6 в § 38 учебника.

Докажите, что значение выражения:

- a) $17^6 + 17^5$ кратно 18; b) $42^8 + 42^7$ кратно 43; 38.25 O
- б) 3¹⁷ + 3¹⁵ кратно 30;
 г) 2²³ + 2²⁰ кратно 72.
- a) $8^7 2^{18}$ кратно 28; b) $9^7 + 3^{12}$ кратно 90; 38.26 O
 - б) 10⁶ + 5⁷ кратно 23;
 г) 6⁴ 2⁸ кратно 13.
- Докажите, что следующее утверждение верно для любого нату-38.27
 - рального значения n: a) $(2^n + 2^{n+1} + 2^{n+2}) : 7$:
 - 6) $(2^n + 2^{n+2} + 2^{n+4} + 2^{n+6}) : 170$:
 - B) $(3^n + 3^{n+1} + 3^{n+2}) : 39;$
 - r) $(5^{2n-1} + 5^{2n+1} + 5^{2n+3}) : 15$.
- Постройте график уравнения: 38.28
 - a) $2x^2 + 3xy + 6x = 0$; B) $2xy 3y^2 6y = 0$;

 - 6) $x^2y + xy^2 = 0$; r) $2x^2y xy^2 = 0$.
- При каких значениях p график линейной функции $y = p^2 2px$ 38.29 проходит через заданную точку:
 - a) (1; 0);
- 6) $\left(-\frac{1}{2}; 0\right)$; B) (-1; 0); r) (2,5; 0)?

539 СПОСОБ ГРУППИРОВКИ

Прочитайте п. 1 в § 39 учебника.

Разложите многочлен на множители:

- 0 39.1
- a) 3a + 3 + na + n; B) ax + 3x + 4a + 12; 6) 6mx 2m + 9x 3; P) 2mx 3m + 4x 6.
- 39.2
 - a) 7kn 6k 14n + 12; b) $9m^2 9mn 5m + 5n$;

 - 6) $7x + 7a 5ax 5a^2$; r) $bc + 3ac 2ab 6a^2$.

39.5

39.3 O a)
$$5y^2 + y + y^3 + 5$$
; B) $z^3 + 21 + 3z + 7z^2$; c) $y^3 - 4 + 2y - 2y^2$; r) $z - 3z^2 + z^3 - 3$.

B)
$$z^3 + 21 + 3z + 7z^2$$
;

6)
$$y^3 - 4 + 2y - 2y^2$$
;

B)
$$x^3 - 6 + 2x - 3x^2$$
:

6)
$$x^3 + 28 - 14x^2 - 2x$$
; r) $2b^3 - 6 - 4b^2 + 3b$.

a)
$$16ab^2 + 5b^2c + 10c^3 + 32ac^2$$
;

6)
$$20n^2 - 35a - 14an + 50n$$
;

B)
$$18a^2 + 27ab + 14ac + 21bc$$
;

r)
$$2x^2yz - 15yz - 3xz^2 + 10xy^2$$
.

39.6 a)
$$40a^3bc + 21bc - 56ac^2 - 15a^2b^2$$
;

$$6) 16xy^2 - 5y^2z - 10z^3 + 32xz^2;$$

B)
$$30x^2 + 10c - 25cx - 12x$$
;

r)
$$18x^2z - 10kxy + 20k^2y - 36kxz$$
.

6)
$$x^{n+1}y^n - y^{n+3} + 2x^{n+1} - 2y^3$$
;

B)
$$a^{n-1}x^2 + x^2 - 4a^{n-1} - 4$$
;

r)
$$x^n y^n - y^{n+1} - x^{n+1} + xy$$
.

Найдите значение выражения: 39.8

a)
$$ax - 2a - 3x + 6$$
, если $a = 1,5$; $x = 3,5$;

б)
$$2a + b + 2a^2 + ab$$
, если $a = -1$; $b = 998$;

в)
$$7by + 4b - 14y - 8$$
, если $y = \frac{5}{38}$, $b = \frac{2}{7}$.

г)
$$5ab - 7b + 5a^2 - 7a$$
, если $a = 3,7$; $b = -3,7$.

39.9 Найдите значение выражения
$$21a^2b - 4b - 12a + 7ab^2$$
, если:

a)
$$a = -\frac{1}{3}$$
; $b = 2$; B) $a = 1\frac{1}{7}$; $b = 0.5$;

6)
$$a = 4$$
; $b = \frac{1}{7}$; r) $a = -\frac{2}{3}$; $b = 3$.

а)
$$6a^2 + 3ab^2 - 4ab - 2b^3$$
, если $a = -1\frac{1}{8}$, $b = -1\frac{1}{2}$;

б)
$$2x^2 - 4xy^2 + 3xy - 6y^3$$
, если $x = \frac{1}{4}$, $y = \frac{1}{6}$.

Вычислите наиболее рациональным способом:

39.11 **(a)** a)
$$2,7 \cdot 6,2 - 9,3 \cdot 1,2 + 6,2 \cdot 9,3 - 1,2 \cdot 2,7;$$

- 6) $125 \cdot 48 31 \cdot 82 31 \cdot 43 + 125 \cdot 83$;
- B) $14.9 \cdot 1.25 + 0.75 \cdot 1.1 + 14.9 \cdot 0.75 + 1.1 \cdot 1.25$;
- r) $3\frac{1}{3} \cdot 4\frac{1}{5} + 4, 2 \cdot \frac{2}{3} + 3\frac{1}{3} \cdot 2\frac{4}{5} + 2, 8 \cdot \frac{2}{3}$.
- a) $109 \cdot 9.17 5.37 \cdot 72 37 \cdot 9.17 + 1.2 \cdot 72$: 39.12 O
 - 5) $19.9 \cdot 18 19.9 \cdot 16 + 30.1 \cdot 18 30.1 \cdot 16$:
 - B) $15.5 \cdot 20.8 + 15.5 \cdot 9.2 3.5 \cdot 20.8 3.5 \cdot 9.2$:
 - r) $77.3 \cdot 13 + 8 \cdot 37.3 77.3 \cdot 8 13 \cdot 37.3$.
- 39.13 Разложите многочлен на множители:
 - a) $ax^2 ay bx^2 + cy + by cx^2$;
 - 6) $xy^2 by^2 ax + ab + y^2 a$;
 - B) ax + bx + cx + ay + by + cy;
 - r) $ab a^2b^2 + a^3b^3 c + abc ca^2b^2$.

Рассмотрите примеры 4-5 в § 39 учебника.

Разложите многочлен на множители, представив один из его членов в виде суммы подобных слагаемых:

- a) $x^2 + 6x + 8$; 39.14
- B) $x^2 + 3x + 2$;
- 6) $x^2 8x + 15$:
- r) $x^2 5x + 6$.

- a) $a^2 7a + 6$; 39.15
- B) $y^2 10y + 24$;
- 6) $b^2 + 9b 10$:
- r) $z^2 18z 40$.
- a) $a^2 + 8ab 9b^2$; 39.16
- B) $x^2 + 4xy 12y^2$;
- 6) $a^2 + 16ab + 55b^2$;
- r) $x^2 + 16xy + 39y^2$.

Решите уравнение:

- a) $x^2 3x + 2 = 0$: 39.17
- B) $x^2 6x + 8 = 0$:
- 6) $x^2 + 8x + 15 = 0$:
- r) $x^2 3x 4 = 0$.
- a) $2x^2 5x + 2 = 0$; B) $4x^2 + 5x 6 = 0$; 39.18

 - $5) 3x^2 + 10x + 3 = 0$:
- r) $3x^2 x 2 = 0$.
- 39.19
 - a) $x^3 + 2x^2 + 3x + 6 = 0$; B) $x^3 + 3x^2 + 5x + 15 = 0$;

 - 6) $x^4 + x^3 8x 8 = 0$; r) $x^4 3x^3 x + 3 = 0$.

При каком значении р заданная пара чисел является решением 39.20 уравнения $p^2x + py + 8 = 0$:

- a) (1: -6):
- 6)(-1;2)?

б) (-2; 5)?

При каких значениях p график линейной функции $y = p^2 - 2px$ 39.21 проходит через заданную точку:

- a) (1: 3);
- При каких целочисленных значениях n выполняется равенство: 39.22
 - a) $6^n 4 \cdot 3^n 3 \cdot 2^n + 12 = 0$:
 - 6) $10^n 8 \cdot 5^n + 8 = 2^n$?

Рассмотрите пример 9 в § 39 учебника.

 а) Докажите, что для любого натурального значения п верно ут-39.23 верждение:

$$(2n^3+3n^2+n)$$
: 6.

б) Докажите, что для любого нечётного натурального значения nверно утверждение:

$$(n^2 + 4n - 5)$$
: 8.

Рассмотрите пример 8 в § 39 учебника.

Найдите целочисленные решения уравнения: 39.24

- a) 2xy + y 4x 2 = 5; 6) 6xy 4y 3x = 1.

Рассмотрите примеры 6-7 в § 39 учебника.

Постройте график уравнения:

a) $x^2 - xy - y + x = 0$; 6) $2xy - 4x + y^2 = 2y$. 39.25

a)
$$2xy - 4y + x^2 - 5x + 6 = 0$$
;
b) $10xy - 3 + x + 2x^2 + 15y = 0$.

Постройте в системе координат хОу график линейной функции 39.27 $y = p^2x + 2p$, если известно, что он проходит через точку (1; 3) и не имеет общих точек с четвёртым координатным углом.

§40

РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ на множители с помощью ФОРМУЛ СОКРАЩЁННОГО УМНОЖЕНИЯ

Разложите многочлен на множители:

40.1 a)
$$x^2 - 196$$

6)
$$169 - m^2$$

a)
$$x^2 - 196$$
; b) $169 - m^2$; b) $y^2 - 144$; r) $225 - n^2$.

r)
$$225 - n^2$$
.

a)
$$4 - 36a^2$$
; B) $400 - 121c^2$;

6)
$$49b^2 - 100$$
; r) $144d^2 - 225$.

6)
$$16d^2 - c^2$$
;

B)
$$m^2 - 64n^2$$
;

a)
$$a^2 - 9b^2$$
; 6) $16d^2 - c^2$; B) $m^2 - 64n^2$; r) $100q^2 - p^2$.

а)
$$49x^2 - 121a^2$$
; в) $9m^2 - 16n^2$; б) $64p^2 - 81q^2$; г) $144y^2 - 25r^2$.

B)
$$9m^2 - 16n^2$$

6)
$$64p^2 - 81q^2$$
;

r)
$$144y^2 - 25r^2$$
,

40.5 a)
$$x^2y^2 - 1$$

6)
$$25 - 36p^2c^2$$

B)
$$4 - c^2 d^2$$

a)
$$x^2y^2-1$$
; 6) $25-36p^2c^2$; B) $4-c^2d^2$; r) $49x^2y^2-400$.

$$P = 16u^2z^2 - 9a^2n^2$$

6)
$$a^2x^2 - 0.25$$

a)
$$c^2d^2 - m^2$$
; B) $16y^2z^2 - 9a^2n^2$; 6) $a^2x^2 - 0.25y^2$; P) $x^2y^2 - 0.25p^2q^2$.

40.7

a)
$$144a^4 - 625c^2$$
;

a)
$$144a^4 - 625c^2$$
; B) $169x^8 - 400u^{16}$;

6)
$$25p^{10} - \frac{1}{9}q^{12}$$
; r) $4b^{16} - \frac{1}{16}d^4$.

r)
$$4b^{16} - \frac{1}{16}d$$

Решите уравнение:

a)
$$x^2 - 49 = 0$$
;

a)
$$x^2 - 49 = 0$$
; B) $z^2 - 625 = 0$;

6)
$$y^2 - 100 = 0$$
; r) $t^2 - 1 = 0$.

$$t^2 - 1 = 0$$

40.9

a)
$$4x^2 - 1 = 0$$

a)
$$4x^2 - 1 = 0$$
; B) $36a^2 - 25 = 0$; 6) $25y^2 - 49 = 0$; r) $144z^2 - 1 = 0$.

6)
$$25y^2 - 49 = 0$$
;

r)
$$144z^2 - 1 = 0$$

Разложите многочлен на множители:

б)
$$b^3 - 27$$
;

B)
$$c^3 - 64$$
;

a)
$$a^3 + 8$$
; 6) $b^3 - 27$; B) $c^3 - 64$; r) $d^3 + 125$.

a)
$$216 - m^3$$
;

a)
$$216 - m^3$$
; B) $729 + p^3$;

6)
$$1000 + m^3$$
; r) $343 - q^3$.

r)
$$343 - q^3$$
.

40.12

a) $64a^3 + 1$; b) $512b^3 - 125$;

6) $27d^3 - 8$;

r) $216c^3 + 1000$.

40.13

a) a^3b^3-1 ; 6) $8+c^3d^3$; B) m^3n^3-27 ; r) p^3q^3+64 .

40.14

a) $8a^3 + b^3$;

B) $216x^3 - y^3$;

6) $64a^3 - 125c^3$; r) $27x^3 + 343t^3$.

Представьте выражение в виде квадрата двучлена:

40.15

a) $a^2 - 2ab + b^2$;

B) $z^2 + 2zt + t^2$:

6) $x^2 + 2xy + y^2$;

r) $m^2 - 2mn + n^2$.

40.16

a) $m^2 + 4m + 4$:

B) $1 - 2b + b^2$;

6) $a^2 - 12a + 36$:

r) $81 + 18y + y^2$.

40.17

a) $4u^2 - 12u + 9$;

B) $9m^2 + 24m + 16$;

6) $9p^2 + 48p + 64$;

r) $9a^2 - 30a + 25$.

40.18

a) $p^2 + 10pq + 25q^2$; B) $x^2 - 14xy + 49y^2$; r) $64t^2 - 16tz + z^2$.

40.19

a) $9x^2 + 24xy + 16y^2$;

6) $225x^2 - 30xy + y^2$;

6) $2.25a^2 - 9ab + 9b^2$:

B) $4m^2 - 28mn + 49n^2$: Γ) $0.25x^2 + 3xy + 9y^2$.

Разложите многочлен на множители:

40.20 a) $(x+1)^2 - 25$:

B) $(z + 10)^2 - 36$;

б) $(y-2)^2-4$;

r) $(t-7)^2-100$.

40.21

a) $49 - (m-3)^2$;

B) $625 - (n + 12)^2$:

6) $400 - (a + 9)^2$;

r) $121 - (b - 13)^2$.

40.22 **a** a) $(y+2)^2-4y^2$;

B) $(t-7)^2-9t^2$: r) $121b^2 - (7b - 3)^2$.

40.23 **a** (a + 4)² - (b + 2)²;

6) $100a^2 - (5a + 9)^2$;

B) $(m+10)^2-(n-12)^2$;

6) $(x-5)^2-(y+8)^2$;

r) $(c-1)^2-(d-23)^2$.

40.24 **a** a) $(3x+1)^2 - (4x+3)^2$:

6) $(6y-7)^2-(9y+4)^2$;

B) $(15z + 4)^2 - (3z - 2)^2$; r) $(13t-9)^2-(8t-7)^2$.

40.25 O a)
$$\frac{1}{8}a^3 - \frac{8}{27}b^3$$
;

6)
$$\frac{64}{343}c^3 + \frac{729}{1000}d^3$$
;

B)
$$\frac{125}{512}x^3 - \frac{216}{343}y^3$$
;

$$r) \frac{1}{729}m^3 + \frac{125}{216}n^3$$
.

6)
$$-x^6 + \frac{1}{8}$$
;

B)
$$27 + b^9$$
;
r) $-\frac{1}{64} - y^6$.

40.27 O a)
$$x^3y^3 - c^3$$
;
6) $m^6n^3 + p^{12}$;

B)
$$a^3 + m^3 n^9$$
;
F) $a^3 - c^{15} d^{18}$.

40.28 O a)
$$\frac{1}{8}a^6 - b^9$$
;

6)
$$\frac{8}{27}a^3 + \frac{1}{64}x^9$$
;

B)
$$\frac{1}{125}x^3 + y^6$$
;

r) $\frac{64}{720}m^3 - \frac{343}{1000}n^6$.

40.29 a)
$$(2c+1)^3-64$$
;

a)
$$(2c + 1)^{\circ} - 64$$
;
b) $p^{3} + (3p - 4)^{3}$;

B)
$$8 - (3 - k)^3$$
;
F) $(5a + 4)^3 - a^3$.

40,30 • a)
$$(6b + 8)^3 - 125b^3$$
;

B)
$$8x^3 - (5x - 3)^3$$
;
F) $(3x + 2u)^3 + 729u^3$.

40.31 O a)
$$\frac{9}{16}a^2 - 2ab + \frac{16}{9}b^2$$
;

6)
$$\frac{9}{25}a^6b^2 + a^4b^4 + \frac{25}{36}a^2b^6$$
;

6) $1000p^3 + (3a - 2p)^3$:

B)
$$b^8 + a^2b^4 + \frac{1}{4}a^4$$
;

 Γ) $0.01x^4 + y^2 - 0.2x^2y$.

40.32 **a**)
$$x^3 + 3x^2 + 3x + 1$$
;

в)
$$c^3 - 6c^2 + 12c - 8$$
;

6)
$$8a^3 - 36a^2 + 54a - 27$$
;

$$-27$$
; r) $27m^3 + 54m^2 + 36m + 8$.

40.33 a)
$$8x^3 + 36x^2y + 54xy^2 + 27y^3$$
;

6)
$$27a^9 - 9a^6 + a^3 - \frac{1}{27}$$
;

B)
$$125x^3 - 300x^2y + 240xy^2 - 64y^3$$
;

r)
$$\frac{1}{8}c^6 - 3c^4b + 24c^2b^2 - 64b^3$$
.

Решите уравнение:

40.34 O a)
$$x^2 - 24x + 144 = 0$$
; B) $x^2 + 32x + 256 = 0$;

$$x^2 + 32x + 256 = 0;$$

6)
$$25x^2 + 60x + 36 = 0$$
; r) $9x^2 - 42x + 49 = 0$.

$$r) 9x^2 - 42x + 49 = 0$$

40.35 O a)
$$\frac{1}{16}a^2 - \frac{1}{25} = 0;$$

B)
$$\frac{9}{16}c^2 - \frac{81}{100} = 0$$
;

6)
$$\frac{4}{49}b^2 - \frac{16}{121} = 0$$
;

r)
$$\frac{36}{1225}d^2 - \frac{64}{441} = 0$$
.

40.36 **o** a)
$$(2x-5)^2-36=0$$
;
b) $(5z-3)^2-9z^2=0$;

B)
$$(4-11y)^2-1=0$$
;
c) $(4t-3)^2-25t^2=0$.

40.37 a)
$$(a+1)^2 - (2a+3)^2 = 0;$$

6)
$$(5c + 8)^2 - (c - 10)^2 = 0$$
;

B)
$$(3b-2)^2-(b+1)^2=0$$
;

r)
$$(7d - 13)^2 - (9d - 25)^2 = 0$$
.

6)
$$x^6 + 9x^5 + 27x^4 + 27x^3 = 0$$
;
B) $27x^3 + 54x^2 + 36x + 8 = 0$;

$$r) x^6 - 3x^4 + 3x^2 - 1 = 0.$$

Вычислите наиболее рациональным способом:

40.39 **a**)
$$\frac{53^2 + 22^2 - 47^2 - 16^2}{65^2 - 2 \cdot 65 \cdot 59 + 59^2}$$
; **b**) $\frac{109^2 - 2 \cdot 109 \cdot 61 + 61^2}{79^2 + 73^2 - 49^2 - 55^2}$;

B)
$$\frac{109^2 - 2 \cdot 109 \cdot 61 + 61^2}{70^2 \cdot 72^2 \cdot 40^2 \cdot 55^2}$$

6)
$$\frac{59^3 - 41^3}{19} + 59 \cdot 41$$
;

r)
$$\frac{67^3 + 52^3}{110} - 67 \cdot 52$$
.

40.40 O a)
$$\left(\frac{97^3 - 53^3}{44} + 97 \cdot 53\right)$$
: $(152,5^2 - 27,5^2)$;

6)
$$(36,5^2-27,5^2):\left(\frac{57^3+33^3}{90}-57\cdot33\right);$$

B)
$$\left(\frac{79^3-41^3}{38}+79\cdot 41\right)$$
; $(133,5^2-58,5^2)$;

r)
$$(94,5^2-30,5^2):\left(\frac{69^3+29^3}{98}-69\cdot 29\right)$$
.

40.41 O a)
$$\frac{27^5 + 27^4}{9^8 + 9^7 + 9^9}$$
; B) $\frac{8^{11} - 8^{10} - 8^9}{4^{15} - 4^{14} - 4^{13}}$;

B)
$$\frac{8^{11}-8^{10}-8^9}{4^{15}-4^{14}-4^{13}}$$
;

6)
$$\frac{16^7 - 16^6}{8^{10} - 8^9 + 8^8}$$
; r) $\frac{9^{23} + 9^{22} + 9^{21}}{27^{14} - 27^{13}}$.

Вычислите:

40.42 O a)
$$\frac{47^3 + 33^3}{47^2 - 47 \cdot 33 + 33^2}$$
; B) $\frac{27^3 - 13^3}{27^2 + 27 \cdot 13 + 13^2}$;

B)
$$\frac{27^3 - 13^3}{27^2 + 27 \cdot 13 + 13^2}$$
;

$$6) \frac{23^3 - 11^3}{23^2 + 23 \cdot 11 + 11^2};$$

6)
$$\frac{23^3 - 11^3}{23^2 + 23 \cdot 11 + 11^2}$$
; r) $\frac{87^5 + 43^8}{87^2 - 87 \cdot 43 + 43^2}$.

40.43 O a)
$$\frac{48^2 - 2 \cdot 48 \cdot 18 + 18^2}{48^2 - 18^2}$$
; B) $\frac{73^2 - 2 \cdot 73 \cdot 23 + 23^2}{26^2 - 24^2}$;

B)
$$\frac{73^2 - 2 \cdot 73 \cdot 23 + 23^2}{26^2 - 24^2}$$

6)
$$\frac{85^2 - 17^2}{85^2 - 2.85 \cdot 17 + 1}$$

6)
$$\frac{85^2 - 17^2}{85^2 - 2 \cdot 85 \cdot 17 + 17^2}$$
; r) $\frac{48^2 - 12^2}{89^2 + 2 \cdot 89 \cdot 31 + 31^2}$.

Найдите значение выражения: 40.44

a) $8a^3 - 60a^2b + 150ab^2 - 125b^3$ при a = 0.935, b = 0.174;

б)
$$27a^3 + 27a^2b + 9ab^2 + b^3$$
 при $a = 0,123$, $b = 1,631$.

40.45 Вычислите:

a) $0.44^3 + 3.0.44^2.0.56 + 1.32.0.56^2 + 0.56^3$;

6)
$$\frac{2,17^3-3\cdot 2,17^2\cdot 0,17+6,51\cdot 0,17^2-0,17^3}{3.48^2+3.48\cdot 1.04+0.52^2}$$
;

B) $17.211^3 - 3.17.211^2.16.211 + 51.622.16.211^2 - 16.211^3$;

$$r) \ \frac{27{,}513^2 - 2 \cdot 27{,}513 \cdot 23{,}513 + 23{,}513^2}{1{,}485^3 + 1{,}485^2 \cdot 1{,}545 + 3 \cdot 1{,}485 \cdot 0{,}515^2 + 0{,}515^3}.$$

Докажите, что данное выражение принимает неотрицательные 40.46 значения при любых значениях переменных:

a)
$$(x^2 - 5x + 1)^2 - (8x^2 - 40x + 8)(y^2 - 3)(y^2 + 3) + 16(y^8 - 18y^4 + 81)$$
;

6)
$$x^6 - 3x^4(4xy - 4y^2) + 48x^2(xy - y^2)^2 - 64(xy - y^2)^3$$
.

Постройте график уравнения:

40.47 a)
$$x^2 - y^2 = 0$$
;

B)
$$y^2 = 9x^2$$
;

6)
$$x^2 = 4u^2$$
;

r)
$$16x^2 - 25y^2 = 0$$
.

40.48 a)
$$(x+1)^2 - y^2 = 0$$
;

B)
$$x^2 - (y - 2)^2 = 0$$

a)
$$(x+1)^2 - y^2 = 0;$$

b) $x^2 - (y-2)^2 = 0;$
c) $(x-3)^2 - (y+2)^2 = 0;$
r) $(x+4)^2 - (y-1)^2 = 0.$

$$r) (x + 4)^2 - (y - 1)^2 = 0$$

40.49 a)
$$(x + 2y)^2 - (2x - y)^2 = 0$$
;

6)
$$(2x - y + 3)^2 - (x - 2y - 3)^2 = 0$$
;

B)
$$(3x + 2y)^2 - (2x + 3y)^2 = 0$$
;

r)
$$(3x + 2y - 6)^2 - (x + y - 1)^2 = 0$$
.

40.50 Решите систему уравнений:

a)
$$\begin{cases} (2x - 3y)^2 - (5x + y)^2 = 0, \\ 5x - 2y = 1; \end{cases}$$

6)
$$\begin{cases} (x + 4y)^2 - (3x - y)^2 = 0, \\ 3x - 7y = 1. \end{cases}$$

§41

РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ на множители с помощью КОМБИНАЦИИ РАЗЛИЧНЫХ ПРИЁМОВ

41.4

Прочитайте п. 1 в § 41 учебника.

Разложите многочлен на множители:

41.1 a)
$$5x^2 - 5$$
;

6)
$$18b^2 - 2c^2$$
;

a)
$$5x^2 - 5$$
; 6) $18b^2 - 2c^2$; B) $3a^2 - 12$; r) $10x^2 - 10y^2$.

41.2 a)
$$x^3 - 81x$$
;

B)
$$64a - a^3$$
;

б)
$$3y^3 - 300y$$
;

r)
$$2b^3 - 288b$$
.

a)
$$c^3 - 0.25c$$
;
b) $50m^3 - 2n^2m$;

B)
$$0.04s - sa^2$$
;
r) $48p^2q - 75q^3$.

a)
$$\frac{16}{49}p^2q - q^3$$
;

B)
$$c^3 - \frac{25}{36} cd^2$$
;

6)
$$2\frac{7}{9}a^3b - \frac{ab^3}{4}$$
;

$$r) \frac{mn^5}{9} - 3\frac{1}{16}m^3n.$$

a)
$$5a^2 + 10ab + 5b^2$$
;
b) $2x^2 + 4x + 2$;

a)
$$5a^2 + 10ab + 5b^2$$
; B) $3m^2 + 3n^2 - 6mn$; 6) $2x^2 + 4x + 2$; P) $8n^2 - 16n + 8$.

41.6 a)
$$-3x^2 + 12x - 12$$
;

B)
$$-5p^2 - 10pq - 5q^2$$

a)
$$-3x^2 + 12x - 12$$
; B) $-5p^2 - 10pq - 5q^2$; 6) $-2a^3 + 20a^2b - 50ab^2$; r) $-36z^3 - 24z^2 - 4z$.

41.7 a)
$$a^4 - 16$$
; б) $b^8 - c^8$; в) $y^8 - 1$; г) $x^4 - z^4$.

(a)
$$4m^3 - 4n^3$$
; B) $15c^3 + 15d^3$; 6) $13a^3 + 13b^3$; r) $21s^3 - 21t^3$.

a)
$$6x^5y - 24xy^3$$
; B) $0.3y^2 - 2.7y^6$; 6) $0.1x^4y - 2.7xy^4$; r) $3a^4b^2 + 24ab^5$.

41.10 O a)
$$(m+3)^3 - 8$$
; B) $(a-12)^3 - 125$; 6) $(c-1)^3 + 27$; F) $(b+4)^3 + 64$.

41.11 O a)
$$(x^2 + 1)^2 - 4x^2$$
; B) $81 - (c^2 + 6c)^2$; 6) $(y^2 + 2y)^2 - 1$; r) $16m^2 - (m - n)^2$.

a)
$$(a^2 + 2ab + b^2) - c^2$$
; B) $16 - (x^2 - 2xy + y^2)$; 6) $1 - m^2 - 2mn - n^2$; r) $4 - p^2 - 2pq - q^2$.

(41.13 O a)
$$x^2 - 2xc + c^2 - d^2$$
; B) $c^2 - d^2 + 6c + 9$; 6) $a^2 + 2a - b^2 + 1$; F) $r^2 - s^2 - 10s - 25$.

41.14 O a)
$$x^2 + 2xy - m^2 + y^2$$
; B) $m^2 - n^2 - 8m + 16$; 6) $c^2 - a^2 + 2ab - b^2$; r) $9 - p^2 + q^2 - 6q$.

41.15 O a)
$$x^3 - x^2y - xy^2 + y^3$$
; B) $a^3 + a^2b - ab^2 - b^3$; 6) $c^2 + 2c - d^2 + 2d$; r) $m^2 - 2n - m - 4n^2$.

41.16 O a)
$$x^2(x-3) - 2x(x-3) + x - 3$$
;
6) $(1-a)^2 - 4a(1-a)^2 + 4a^2(1-a)^2$.

41.19 **O** a)
$$a^3 - a^2 - 2a + 8$$
; 6) $b^3 - 6b^2 - 6b + 1$.

41.20 a)
$$a(a+6) - (2b-3)(2b+3)$$
;
6) $4x(x+3) - (5y+3)(5y-3)$.

41.21 O a)
$$63a^3b - 28ab^3 + 28ab^2 - 7ab$$
;
6) $300x^5 - 48x^3y^2 + 12x^3(10x + 1)$.

a)
$$a^3 - 3a^2 + 3a + 26$$
;
b) $a^3 + 6a^2 + 12a + 7$;
c) $x^3 - a^3 + 3a^2 - 3a + 1$;
r) $8x^3 + a^3 + 6a^2 + 12a + 8$.

a) (x + 1)(x + 2)(x + 3)(x + 4) - 35; 41.23

6) $x(x+2)^2(x+4)-21$.

Степенью одночлена называют сумму показателей переменных 41.24 одночлена (например, xy^5 — одночлен 6-й степени). Степенью многочлена называют наибольшую из степеней одночленов, составляющих многочлен. Представьте многочлен $a^6 + a^4 + a^2b^2 + b^4 - b^6$

Представьте многочлен $x^5 - 7x^2 + 2x + 4$ в виде произведения 41.25 многочленов степени не выше второй.

в виде произведения многочленов второй степени.

Прочитайте п. 2 в § 41 учебника.

Решите уравнение:

41.26 **(a)** a) $x^3 - x = 0$:

B) $c^3 + c^2 = 0$:

6) $16y - y^3 = 0$;

r) $d^3 + d = 0$.

a) $x^3 + x^2 - 4x - 4 = 0$; b) $9z + 9 - z^3 - z^2 = 0$; c) $y^3 + 2y^2 - 4y - 8 = 0$; r) $p^3 - p^2 - 4p + 4 = 0$.

41.28 a) $4x^4 - 5x^2 + 1 = 0$; b) $4x^4 - 45x^2 + 81 = 0$; c) $16x^8 - 17x^4 + 16 = 0$; r) $16x^8 - 17x^4 + 1 = 0$.

41.29

a) $x^4 + 2x^3 - 2x - 1 = 0$; 6) $x^4 + 4x^3 - 16x - 16 = 0$.

Постройте график уравнения:

a) $xy^2 = 4x$; 41.30

B) $yx^2 + 9y = 0$;

6) $x^2 + 4x - xy - 2y + 4 = 0$; r) $x^2 + xy - 2y - 4 = 0$.

a) $x^2 - 6xy + 8y^2 = 0$; 41.31

B) $x^2 + xy - 2y^2 = 0$:

6) $2x^2 + 5xy + 2y^2 = 0$:

r) $3x^2 - 10xy + 3y^2 = 0$.

Пусть $x_1 + x_2 = 7$, $x_1 x_2 = 2$. Вычислите: 41.32

a) $x_1x_2^2 + x_1^2x_2$;

B) $x_1^2 + x_2^2$;

6) $x_1^2 + x_1x_2 + x_2^2$;

r) $x_1^3 + x_2^3$.

Пусть $x_1 + x_2 = 5$, $x_1 x_2 = -3$. Вычислите: 41.33

a)
$$x_1^4 + x_2^4$$
;

$$6)(x_1 - x_2)^2$$

B)
$$x_1^3x_2^2 + x_1^2x_2^3$$
;

a)
$$x_1^4 + x_2^4$$
; 6) $(x_1 - x_2)^2$; B) $x_1^3 x_2^2 + x_1^2 x_2^3$; r) $x_1^2 x_2^4 + x_1^4 x_2^2$.

Докажите, что: 41.34

a)
$$(7 \cdot 11^6 - 7) : 84$$
;

a)
$$(7 \cdot 11^6 - 7) : 84$$
; 6) $(156 \cdot 13^5 - 12^7) : 75$.

 а) Докажите, что если т и п — целые числа, отличные от 0, 1, 41.35 -1, то $m^4 + 4n^4$ — составное число.

б) Докажите, что $n^4 + 324$ — составное число при любом целом n.

Решите систему уравнений:

$$\int x^2 - 4y^2 = 0,$$

41.36 a)
$$\begin{cases} x^2 - 4y^2 = 0, \\ 2x + 5y = 18; \end{cases}$$
 6)
$$\begin{cases} 9x^2 - y^2 = 0, \\ 5x + 2y = 22. \end{cases}$$

41.37 a)
$$\begin{cases} x^2 + 4xy + 4y^2 = 7x + 14y, \\ 2x + 5y = 15; \end{cases}$$

6)
$$\begin{cases} 9y^2 - 6xy - 5x + x^2 + 15y = 0, \\ 3x - 4y = 20. \end{cases}$$

41.38 a)
$$\begin{cases} x^2 - 9y^2 + 2x - 6y = 0, \\ 5x + 6y + 1 = 0; \end{cases}$$

6)
$$\begin{cases} 4y^2 + 3x = x^2 + 6y, \\ 7x + 8y = 15. \end{cases}$$

41.39 a)
$$\begin{cases} x^2 - xy - 6x + 6y = 0, \\ 5x + 3y = 24; \end{cases}$$

6)
$$\begin{cases} 2y^2 + xy - 3x - 6y = 0, \\ 3x + y = 10. \end{cases}$$

41.40 a)
$$\begin{cases} x^3 + 6x^2y + 12xy^2 = 27 - 8y^3, \\ 3x + 10y = 1; \end{cases}$$

6)
$$\begin{cases} 8y^3 + 6x^2y = 8 + 12xy^2 + x^3, \\ 2x - 5y - 3 = 0. \end{cases}$$

§42

СОКРАЩЕНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ

Найдите общий делитель для данных одночленов: 42.1

- а) $3a^2b^3$, $12a^3b^2$; в) $6x^2y$, $9y^5$; б) $15b^{12}c^2$, $25b^3c^4$; г) p^5q^2 , $12p^2q^5$.

Сократите дробы:

42.2 a)
$$\frac{y^4}{u^3}$$
; b) $\frac{-z^5}{z^8}$; b) $\frac{m^{10}}{-m^{24}}$; r) $\frac{-n^{19}}{-n^4}$.

42.3 a)
$$\frac{z^8t^4w^{20}}{z^{43}w}$$
; b) $\frac{-m^{15}n^4r^8}{z^{19}v^{21}v^6}$; b) $\frac{a^{12}x^{19}z^5}{z^{40}v^{31}v^6}$; r) $\frac{-b^{100}y^5z}{z^{101}v^3z^4}$.

6)
$$\frac{-m^{15}n^4r^8}{19 \cdot 21 \cdot 6}$$

B)
$$\frac{a^{12}x^{19}z^5}{a^{40}x^{31}z^6}$$

$$\Gamma) \frac{-b^{100}y^5z}{-b^{101}u^3z^4}$$

42.4 a)
$$\frac{-3a^2b}{-9a^3}$$
; b) $\frac{7x^4y}{-49xy^3}$; b) $\frac{-21cd^4}{14cd^3}$; r) $\frac{30p^2q^3}{48p^3a^3}$.

6)
$$\frac{7x^4y}{49xu^3}$$

B)
$$\frac{-21cd^4}{14cd^3}$$

r)
$$\frac{30p^2q^3}{48p^3q^3}$$

(42.5) a)
$$\frac{15a(p-q)}{20b(p-q)}$$
; B) $\frac{2b(m+n)}{6bc(m+n)}$;

B)
$$\frac{2b(m+n)}{6bc(m+n)}$$

$$6) \ \frac{8a^2b^3(a+b)}{20ab^2(a+b)};$$

$$6) \frac{8a^2b^3(a+b)}{20ab^2(a+b)}; \qquad r) \frac{44c^3d^8(c-d)}{100c^5d^4(c-d)}.$$

42.6 a)
$$\frac{5(x-y)}{15(y-x)}$$
;

B)
$$\frac{2(m-n)}{a(n-m)}$$
;

6)
$$\frac{150a^2b^3(z-t)}{300ab^5(t-z)}$$

6)
$$\frac{150a^2b^3(z-t)}{300ab^5(t-z)}$$
; r) $\frac{13x^3y^4z^5(c-d)}{26xy^5z^7(d-c)}$.

42.7 a)
$$\frac{2a(x+y)}{8a(x+y)(x-y)}$$
; B) $\frac{3(a-b)(a+b)}{6(a+b)(a-b)}$;

B)
$$\frac{3(a-b)(a+b)}{6(a+b)(a-b)}$$
;

6)
$$\frac{(a-1)(a^2+a+1)}{a^2+a+1}$$
; r) $\frac{3(n^2+n+1)}{(n-1)(n^2+n+1)}$.

r)
$$\frac{3(n^2+n+1)}{(n-1)(n^2+n+1)}$$

42.8 a)
$$\frac{(a-b)^2}{(b-a)^2}$$
;

B)
$$\frac{16(x-y)^2}{48(y-x)^2}$$
;

6)
$$\frac{12a^3b^5(p-q)^2}{36a^2b(q-p)^2}$$
; r) $\frac{49xy(c-d)^2}{7x^2(d-c)^2}$.

r)
$$\frac{49xy(c-d)^2}{7x^2(d-c)^2}$$

(42.9) a)
$$\frac{(x+5)^3}{(x+5)^2}$$
; B) $\frac{(y-8)^{49}}{(y-8)^8}$;

B)
$$\frac{(y-8)^{10}}{(y-8)^8}$$
;

6)
$$\frac{c(z-15)^3}{8c(z-15)^4}$$
; r) $\frac{3a(b-2)}{6(b-2)^2}$.

r)
$$\frac{3a(b-2)}{6(b-2)^2}$$
.

(42.10) a)
$$\frac{6a+6b}{7a+7b}$$
; b) $\frac{xz-3yz}{x^2-3xy}$; b) $\frac{s^2+s}{5s+5}$; r) $\frac{3c^3+3cd^2}{6dc^2+6d^3}$.

6)
$$\frac{xz - 3yz}{r^2 - 3xy}$$
;

B)
$$\frac{s^2 + s}{5s + 5}$$

r)
$$\frac{3c^3 + 3cd^2}{6dc^2 + 6d^3}$$

42.11 a)
$$\frac{8x-8y}{9y-9x}$$
; b) $\frac{ma+a}{-mc-c}$; b) $\frac{3m-6n}{12n-6m}$; r) $\frac{2p-4q}{16q-8p}$.

$$\delta$$
) $\frac{ma+a}{}$

B)
$$\frac{3m-6n}{12n-6m}$$

$$r) \frac{2p-4q}{16a-9p}$$

42.12 a)
$$\frac{-ax-bx}{ay+by}$$
; b) $\frac{m^5-3m^2}{2m^7-6m^4}$;

B)
$$\frac{m^3-3m^2}{2m^7-6m^4}$$
;

6)
$$\frac{4x^2y - 4x^3}{12x^2y^2 - 12xy^3}$$
; r) $\frac{3n^6 + 2n^4}{15n^8 + 10n^6}$.

r)
$$\frac{3n^6 + 2n^4}{15n^8 + 10n^6}$$

42.13 O a)
$$\frac{x^2 - xy}{x^2y - xy^2}$$
;

B)
$$\frac{ma^2 - m^2a}{m^2 - ma}$$
;

6)
$$\frac{pq^4 - cq^4}{cq^3 - pq^3}$$
;

6)
$$\frac{pq^4 - cq^4}{cq^3 - pq^3}$$
; r) $\frac{2nd^4 - 4pd^4}{3nd^3 - 6nd^3}$.

(42.14) a)
$$\frac{4a^2 - 9b^2}{2a - 3b}$$
; b) $\frac{8 + 3c}{9c^2 - 64}$; b) $\frac{36 - y^2}{6 - y}$; r) $\frac{100 - 49d^2}{7d + 10}$.

$$\frac{8+3c}{9c^2-64}$$

B)
$$\frac{36-y^2}{6-y}$$
;

r)
$$\frac{100-49d^2}{7d+10}$$

б)
$$\frac{y^2 - 144}{10^{2}}$$

B)
$$\frac{4-d^2}{3d+6}$$
;

r)
$$\frac{c^2 - 5c^2}{25 - c^2}$$

42.16 **O** a)
$$\frac{15a^4b^2 - 15a^2}{45a^4b + 45a^3}$$
; B) $\frac{17a^3b + 17a^4c}{51a^2b^2 - 51a^4c^2}$;

B)
$$\frac{17a^3b + 17a^4c}{51a^2b^2 - 51a^4c^2};$$

6)
$$\frac{18a^4b - 72a^2b}{48ab^2 - 24a^2b^2}$$
;

6)
$$\frac{18a^4b - 72a^2b}{48ab^2 - 24a^2b^2}$$
; r) $\frac{36a^3b^2c - 36a^3b^3}{48ab^5 - 48ab^3c^2}$.

(42.17) a)
$$\frac{a^3-8}{a^2+2a+4}$$
; b) $\frac{x^3+1}{x^2-x+1}$;

B)
$$\frac{x^{9}+1}{x^{2}-x+1}$$
;

6)
$$\frac{1-5y+25y^2}{125y^3+1}$$
; r) $\frac{4t^2+2t+1}{8t^3+1}$.

r)
$$\frac{4t^2 + 2t + 1}{8t^3 + 1}$$

42.18 a)
$$\frac{(x+y)^2}{x^2-y^2}$$
;

B)
$$\frac{(m-n)^2}{m^2-n^2}$$
;

$$6) \ \frac{(d+2)^2}{7d^2+14d};$$

r)
$$\frac{6pq-18p}{(q-3)^2}$$
.

(42.19) a)
$$\frac{a^2 + 2ab + b^2}{a + b}$$
;

B)
$$\frac{x-y}{x^2-2xy+y^2}$$
;

6)
$$\frac{(p-q)^2}{p^2-2pq+q^2}$$
;

r)
$$\frac{m^2 + 2mn + n^2}{(m+n)^2}$$
.

(42.20) a)
$$\frac{1-2p}{1-4p+4p^2}$$
;

B)
$$\frac{c^2-18c+81}{c-9}$$
;

6)
$$\frac{9-6x+x^2}{x-3}$$
;

r)
$$\frac{5-2m}{4m^2-20m+25}$$
.

42.21 **O** a)
$$\frac{270a^{10}b^8c^7}{810a^4b^{12}c}$$
;

B)
$$\frac{140m^{25}n^{101}r^{64}}{42m^{14}n^{202}r^{61}};$$

r) $\frac{540p^{12}q^{43}t^{54}}{36n^2q^{54}t^{55}}.$

42.22 O a)
$$\frac{x^2-4x+4}{2x-6}$$
;

6) $\frac{132x^5y^{10}z^{11}}{144x^6y^5z^{22}}$;

B)
$$\frac{4-4x}{x^2-2x+1}$$
;

6)
$$\frac{a^2+2a+1}{a^2-a}$$
;

r)
$$\frac{3q^2 + 24q}{q^2 + 16q + 64}$$
.

42.23 **O** a)
$$\frac{y^2 - x^2}{x^2 - 2xy + y^2}$$
;

B)
$$\frac{b^2-49}{49-14b+b^2}$$
;

6)
$$\frac{16c^2-1}{16c^2-8c+1}$$
;

r)
$$\frac{4n^2-4nm+m^2}{4n^2-m^2}$$
.

42.24 O a)
$$\frac{3x^2 - 6xy + 3y^2}{6x^2 - 6y^2}$$
; B) $\frac{40c^2 - 10d^2}{20c^2 + 20cd + 5d^2}$;

B)
$$\frac{40c^2 - 10d^2}{20c^2 + 20cd + 5d^2}$$

6)
$$\frac{m^2 + 6mn + 9n^2}{4m^2 + 12mn}$$
; r) $\frac{4n^2 - 4n + 1}{2n - 4n^2}$.

r)
$$\frac{4n^3-4n+1}{2n-4n^2}$$

B)
$$\frac{p^2-2pq+q^2}{(q^2-p^2)^2}$$
;

$$6) \frac{7x^2y^2 - 14xy^3 + 7y^4}{x^4 - 2x^2y^2 + y^4}; \qquad r) \frac{m^4 - 2m^2n^2 + n^4}{6m^3n + 12m^2n^2 + 6n^3m}.$$

r)
$$\frac{m^4 - 2m^2n^2 + n^4}{6m^3n + 12m^2n^2 + 6n^3m}$$
.

42.26 O a)
$$\frac{1-c^2}{1-c^3}$$
; 6) $\frac{8t^3+125}{4t^2-25}$; B) $\frac{b^2-4}{b^3-8}$; $\frac{16z^2-9}{27-64z^3}$.

6)
$$\frac{8t^3 + 125}{4t^2 + 05}$$
;

B)
$$\frac{b^2-4}{b^3-8}$$
;

r)
$$\frac{16z^2-9}{27-64z^3}$$

42.27 O a)
$$\frac{3qp^2-27q}{27q-p^3q}$$
; B) $\frac{8mn^2-2m}{8mn^4+mn}$;

$$8mn^4 - 2m \over 8mn^4 + mn$$

6)
$$\frac{x^6 - y^6}{r^3 + y^3}$$
; r) $\frac{y^6 + y^3}{y^6 - 1}$.

r)
$$\frac{y^6 + y^3}{y^6 - 1}$$
.

Найдите значение алгебраической дроби, предварительно сократив её:

42.28 O a)
$$\frac{a^2-2a}{6-2a}$$
 при $a=-108$; B) $\frac{c^2+4c}{12+3c}$ при $c=24$;

в)
$$\frac{c^2 + 4c}{12 + 3c}$$
 при $c = 24$;

6)
$$\frac{3b^2 + 9b}{b^2 + 9b}$$
 при $b = 3,1$; r) $\frac{x^2 - 9}{2x^2 + x^3}$ при $x = 3$.

r)
$$\frac{x^2 - 9}{2}$$
 при $x = 3$

42.29 О а)
$$\frac{x+6}{x^2+12x+36}$$
 при $x=94$;

б)
$$\frac{z^2-8z+16}{z^2-16}$$
 при $z=-16$;

B)
$$\frac{y^2-14y+49}{y-7}$$
 при $y=-4$;

г)
$$\frac{t^2-100}{t^2+20t+100}$$
 при $t=-8$.

42.30 O a)
$$\frac{40x^2 - 5xy}{y^2 - 8xy}$$
 при $x = 2$, $y = 10$;

б)
$$\frac{21a^2-12ab}{20b^2-35ab}$$
 при $a=10$, $b=-3$;

в)
$$\frac{15c^2-10cd}{8d^2-12cd}$$
 при $c=-6$, $d=4$;

г)
$$\frac{25z^2-20zt}{16z^2-20zt}$$
 при $z=-3$, $t=-2$.

- 42.31 O a) $\frac{a^3 + 27}{a^2 3a + 9}$ при a = 15; b) $\frac{b^2 + 2b + 4}{b^3}$ при $b = \frac{1}{3}$;

 - 6) $\frac{c^3 + 64}{3c^2 12c + 48}$ при c = 5; r) $\frac{d^2 5d + 25}{2d^3 + 250}$ при d = -4.5.

- 42.32 O a) $\frac{pz+qz+p+q}{pt+qt+p+q}$ при $p=2,5,\ q=0,5,\ z=25,\ t=12;$
 - б) $\frac{c-d+c^2-d^2}{c-d+c^2-2cd+d^2}$ при c=8, d=-2;
 - в) $\frac{m-n+mx-nx}{m-n+my-ny}$ при $x=\frac{1}{2},\ y=\frac{1}{3},\ m=1256,\ n=4516;$
 - r) $\frac{a+b+a^2-b^2}{a-b+a^2-2ab+b^2}$ при a=3, b=5.

Сократите дробь:

- 42.33 a) $\frac{32a^4b^5c 2a^4b^3c^3}{a^3b^4c^3 + a^3b^5c^2}$;
- B) $\frac{6a^2b^4c^4 9a^2b^3c^5}{54abc^7 24ab^3c^5}$;
- 6) $\frac{x^n y^{2n+1} + x^{n+1} y^{2n}}{x^{2n+2} u^n x^{2n} u^{n+2}}$;
- r) $\frac{2x^{n+2}y^{n-1} + 3x^{n+1}y^n}{9x^{n-1}u^{n+3} 4x^{n+1}u^{n+1}}$.

- 42.34 **a** a) $\frac{32a^4b 80a^3b^2 + 50a^2b^3}{20ab^3 16a^2b^2}$; b) $\frac{18a^4b^2 30a^3b^3}{75a^2b^5 90a^3b^4 + 27a^4b^3}$;
 - 6) $\frac{18a^3b^2 + 36ab^4}{96a^2b^5 + 96a^4b^3 + 24a^6b}$; r) $\frac{10a^2b^8 + 60a^4b^6 + 90a^6b^4}{45a^5b + 15a^3b^3}$.

- 42.35 O a) $\frac{4a^3bc^3 4a^2b^2c^2 + ab^3c}{26a^3c 13a^2b}$;
 - 6) $\frac{40x^2y^6z^4 + 8x^4y^3z^4}{2x^5u^4z + 20x^3u^7z + 50xu^{10}z}$
 - B) $\frac{36x^2y 12xy^3}{27x^4yz 18x^3y^3z + 3x^2y^5z}$;
 - r) $\frac{6a^4b^4c^{11} + 24a^4b^4c^7d^4 + 24a^4b^4c^3d^8}{6a^5b^3c^5d^4 + 3a^5b^3c^9},$

42.36 **O** a)
$$\frac{18x^5 - 72x^3y^2}{12x^3y^2 - 48x^2y^3 + 48xy^4};$$

6)
$$\frac{72a^2bc^3 - 96a^4bc^2 + 32a^6bc}{16a^5b^2c^3 - 36ab^2c^5}$$
;

B)
$$\frac{135a^3b^3 + 180a^2b^4 + 60ab^5}{225a^5b - 100a^3b^3}$$
;

$$\Gamma) \ \frac{150x^5y^2z - 24x^3y^6z}{40xy^5z^2 - 200x^2y^3z^2 + 250x^3yz^2}.$$

42.37 O a)
$$\frac{a^2 - ab - bc - c^2}{b^2 - a^2 + 2ac - c^2}$$
; B) $\frac{ax^2 - 2x^2 - ay^2 + 2y^2}{ax + ay - 2x - 2y}$;

B)
$$\frac{ax^2-2x^2-ay^2+2y^2}{ax+ay-2x-2y}$$
;

6)
$$\frac{2xy-3+3x-2y}{9+12y+4y^2}$$
; r) $\frac{3xy-2x-3y+2}{x^2-2x+1}$.

r)
$$\frac{3xy-2x-3y+2}{x^2-2x+1}$$

B)
$$\frac{a^2-c^2}{a^2+ac-ax-cx}$$
;

6)
$$\frac{x^2 - yz + xz - y^2}{x^2 + yz - xz - y^2};$$

6)
$$\frac{x^2 - yz + xz - y^2}{x^2 + yz - xz - y^2}$$
; r) $\frac{12z^2 - 9rz + 4nz - 3rn}{20z^2 + 3rn - 15rz - 4nz}$.

42.39 a)
$$\frac{x^{3n} - x^n y^{2n}}{3x^{3n} + 6x^{2n} y^n + 3x^n y^{2n}};$$

$$6) \ \frac{a^{3n-1}b^{n+1}-4a^{n-1}b^{n+1}}{4a^nb^{n-1}-4a^{2n}b^{n-1}+a^{3n}b^{n-1}};$$

B)
$$\frac{2a^{n+1}-4a^{2n+1}+2a^{3n+1}}{4a^{3n}-4a^n}$$
;

r)
$$\frac{54xy^{3n}z^n - 72x^{n+1}y^{2n}z^n + 24x^{2n+1}y^nz^n}{12x^{2n+2}y^{n-1}z^{n+1} - 27x^2y^{3n-1}z^{n+1}}.$$

42.40 a)
$$\frac{a^{99} + 512}{a^{100} - 8a^{67} + 64a^{34}}$$
;

42.40 a)
$$\frac{a^{99} + 512}{a^{100} - 8a^{67} + 64a^{34}}$$
; b) $\frac{a^{3n} - b^{6n}}{(a^{2n} - b^{4n})(a^{2n+1} + a^{n+1}b^{2n} + ab^{4n})}$

42.41 a)
$$\frac{x^4 + x^2 + 1}{x^2 - x + 1}$$
; b) $\frac{a^4 + 324}{a^2 + 6a + 18}$.

6)
$$\frac{a^4 + 324}{a^2 + 6a + 18}$$

42.42 a)
$$\frac{8x^3 + 36x^2y + 54xy^2 + 27y^3}{16x^4 - 72x^2y^2 + 81y^4}$$
; b) $\frac{81a^4 - 18a^2b^2 + b^4}{27a^3 - 27a^2b + 9ab^2 - b^3}$.

6)
$$\frac{81a^4 - 18a^2b^2 + b^4}{27a^3 - 27a^2b + 9ab^2 - b^3}$$

Докажите, что при любых допустимых значениях переменных 42.43 данное выражение принимает одно и то же числовое значение:

a)
$$\frac{9b^2 - 30b + 25 + (6b - 10)(7b + 5) + (7b + 5)^2}{(2b + 7)^2 - (2b + 7)(14 - 6b) + 9b^2 - 42b + 49}$$
;

6)
$$\frac{(2x-3y)^2-(2x-3y)(2y-10x)+25x^2-10xy+y^2}{x^2+6xy+9y^2+(2x+6y)(6x-7y)+(6x-7y)^2}.$$

§ 43 тождества

Выясните, является ли равенство тождеством:

43.1 a)
$$a + b = b + a$$
;

$$B) ab = ba;$$

6)
$$(a + b) + c = a + (b + c)$$
; r) $(ab)c = a(bc)$.

$$r)(ab)c = a(bc)$$

43.2 a)
$$a(b+c) = ab + ac;$$

B)
$$a \cdot 1 = a$$
;

б)
$$a + 0 = a$$
;

$$\Gamma$$
) $a + (-a) = 0$.

43.3 a)
$$a \cdot (-b) = -ab;$$

B)
$$(-a)(-b) = ab$$
;

6)
$$a - b = a + (-b)$$
:

r)
$$a \cdot 0 = 0$$
.

Какие свойства действий позволяют утверждать, что тождественно равны выражения:

6)
$$(x + 4) + y \times x + (4 + y)$$
;

$$(5)$$
 $(x+4)+y$ и $x+(4+y)$; (5) $(c+d)+3$ и (5) (5) (6) (6) (7)

в)
$$4t + 8sr$$
 и $8rs + 4t$:

$$r) (a + b) \cdot 2 u 2a + 2b?$$

Докажите тождество:

43.6 a)
$$x - y = -(y - x)$$
;

B)
$$2a - 3b = -(3b - 2a)$$
:

6)
$$(m-n)^2 = (n-m)^2$$
;

a)
$$x - y = -(y - x);$$

b) $2a - 3b = -(3b - 2a);$
c) $(3c - 4d)^2 = (4d - 3c)^2.$

a) 10a - (-(5a + 20)) = 5(3a + 4); 43.7

6)
$$-(-7x) - (6 + 5x) = 2(x - 3)$$
;

B)
$$12y - (25 - (6y - 11)) = 18(y - 2)$$
;

r)
$$36 - (-(9c - 15)) = 3(3c + 7)$$
.

a)
$$a^2 + 7a + 10 = (a + 2)(a + 5)$$
;

6)
$$(b-8)(b+3) = b^2 - 5b - 24$$
;

B)
$$x^2 - 9x + 20 = (x - 4)(x - 5)$$
;

r)
$$(c-4)(c+7) = c^2 + 3c - 28$$
.

a)
$$(a-4)(a+2)+4=(a+1)(a-3)-1$$
;

6)
$$16 - (x + 3)(x + 2) = 4 - (6 + x)(x - 1)$$
;

B)
$$(y-3)(y+7)-13=(y+8)(y-4)-2$$
;

r)
$$(z-11)(z+10)+10=(z-5)(z+4)-80$$
.

a)
$$(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$$
;

$$6) (a + b)^2 - (a - b)^2 = 4ab;$$

B)
$$a^2 + b^2 = (a + b)^2 - 2ab$$
;

r)
$$(a + b)^2 - 2b(a + b) = a^2 - b^2$$
.

a)
$$a^3 + b^3 + 3ab(a + b) = (a + b)^3$$
;

$$6) a^3 - b^3 - 3ab(a - b) = (a - b)^3.$$

43.12 **(a)** a)
$$x^{15}(-x^2)^3((-x)^3)^2 = (((-x)^2)^3)^2(-x^5)^3$$
;

$$6) \ \frac{a^2(-a)^3(-a)^4((-a)^3)^3}{-a^0a^3(-a)^5} = -a(-a)(-a^4)^2.$$

43.13 O a)
$$(2a - b)(2a + b) + (b - c)(b + c) + (c - 2a)(c + 2a) = 0$$
;

6)
$$(3x + y)^2 - (3x - y)^2 = (3xy + 1)^2 - (3xy - 1)^2$$
;

B)
$$(x-3y)(x+3y)+(3y-c)(3y+c)+(c-x)(c+x)=0$$
;

r)
$$(a-b)(a+b)((a-b)^2+(a+b)^2)=2(a^4-b^4)$$
.

6)
$$(x + a)(x + b) = x^2 + (a + b)x + ab$$
;

B)
$$(a-b)(a+b)-(a-c)(a+c)-(c-b)(c+b)=0$$
;

r)
$$(m-a)(m-b) = m^2 - (a+b)m + ab$$
.

43.15 • a)
$$(a-1)^3 - 4(a-1) = (a-1)(a+1)(a-3)$$
;

6)
$$(x^2+1)^2-4x^2=(x-1)^2(x+1)^2$$
:

B)
$$(a + 1)^3 - (a + 1) = a(a + 1)(a + 2)$$
:

r)
$$4b^2c^2 - (b^2 + c^2 - a^2)^2 = (a + b + c)(a - b + c)(a + b - c)(b + c - a)$$
.

43.16 a)
$$a(b+c)^2 + b(c+a)^2 + c(a+b)^2 - 4abc = (a+b)(b+c)(c+a);$$

6)
$$(b-c)(b+c)^2+(c-a)(c+a)^2+(a-b)(a+b)^2=-(a-b)\times \times (b-c)(c-a)$$
.

43.17 a)
$$(a^4 + b^4)(a^4 + b^4 - 2ab) - (a^4 + b^4 - 6ab)(a^4 + b^4 + 4ab) = 24(ab)^2$$
;

6)
$$(3x^3 + 2xy)(x^3 + xy + 1) + (x^3 + 2xy)(xy - 1 - 3x^3) = 2x^3 + 4(-xy)^2$$
.

43.18 О Докажите, что каждое из выражений $(a + b)(a^3 - a^2b + ab^2 - b^3)$ и $(a - b)(a^3 + a^2b + ab^2 + b^3)$ тождественно равно выражению $a^4 - b^4$.

Докажите тождество:

43.19 **a**)
$$\frac{27-m^3}{m^2+3m+9}=\frac{9-m^2}{3+m}$$
;

6)
$$\frac{x^2 + 2xy + 4y^2}{x^3 - 8y^3} = -\frac{2y - x}{x^2 - 4x + 4y^2}$$
;

B)
$$\frac{5-p}{p^2-25}=-\frac{p^2-5p+25}{p^3+125}$$
;

r)
$$\frac{9a^2 + 6ab + b^2}{3a + b} = \frac{27a^3 + b^3}{9a^2 - 3ab + b^2}$$
.

43.20 **O** a)
$$\frac{a^3-64}{a-4}+4a=(a+4)^2$$
;

6)
$$(3b-1)(3b+1) - \frac{27b^3+1}{3b+1} = 3b-2;$$

B)
$$\frac{c^3 + 125}{c + 5} - 5c = (c - 5)^2$$
;

r)
$$\frac{8d^3-27}{2d-3}-(2d+3)^2=-6d$$
.

43.21 О Докажите, что выражение A + B - C тождественно равно выражению C - B - A, если A = 2x - 1, B = 3x + 1 и C = 5x.

201 Рассмотрите примеры 1—2 в § 43 учебника.

43.22 О Установите, является ли данное равенство тождеством, и если да, то укажите допустимые значения переменных:

a)
$$\frac{x^4 - 4x^2}{x^2 - 2x} = x^2 + 2x$$
;

B)
$$\frac{2a^3 - 12a^2 + 18a}{4a^4 - 36a^2} = \frac{a - 3}{2a^2 + 6a}$$

$$\text{ f) } \frac{3x^5 - 24x^2}{6x^5 - 12x^4} = \frac{x^2 + 2x + 4}{2x^2}; \qquad \text{ r) } \frac{a^6b^2 - 27a^3b^2}{2a^3b^3 - 6a^2b^3} = \frac{a^3 + 3a^2 + 9a}{2b}.$$

43.23 О Докажите, что если a+b=9, то (a+1)(b+1)-(a-1)(b-1)=18.

Докажите, что выражение (b+c-2a)(c-b)+(c+a-2b)(a-c)-(a+b-2c)(a-b) тождественно равно нулю.

Подберите значения m и n так, чтобы получилось тождество: 43.25

a)
$$(x^2x^m)^n = (x^3x^n)^m : x^6$$
; 6) $((x^3x^m)^2)^n = (((-x)^5)^2(-x)^2x^n)^m$.

Докажите, что:

 $(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)(a^{16}+b^{16})(a^{32}+b^{32})=a^{64}-b^{64}$, если 43.26 b = a - 1.

a) $(x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) = x^5 + y^5$; 43.27 6) $(x+1)(x^{16}-x^{15}+x^{14}-x^{13}+...-x+1)=x^{17}+1$.

a) $(a-1)(a^{n-1}+a^{n-2}+a^{n-3}+...+a+1)=a^n-1$; 43.28 6) $(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+xy^{n-2}+y^{n-1})=x^n-y^n$.

а) Докажите, что если $x^2 + y^2 + z^2 = xy + xz + yz$, то x = y = z. 43.29 б) Докажите, что если $(x-y)^2 + (y-z)^2 + (z-x)^2 = (x+y-2z)^2 +$ $+(y+z-2x)^2+(z+x-2y)^2$, To x=y=z.

Рассмотрите пример 3 в § 43 учебника.

Постройте график уравнения: 43.30

a)
$$\frac{2y^2 - x - xy + 2y}{1 + x^2} = 0$$
;

a)
$$\frac{2y^2 - x - xy + 2y}{y + 1} = 0$$
; 6) $\frac{y^2 - 8y + 16x - 4x^2}{y - 2x} = 0$.

Используя тождество из № 43.28 б, постройте график уравнения 43.31

$$\frac{x^7 - y^7}{(x^2 + y^2)(x^4 - x^2y^2 + y^4) + xy(x^4 + y^4) + x^2y^2(x^2 + xy + y^2)} = 0.$$

СРЕДНЕЕ ЗНАЧЕНИЕ И ДИСПЕРСИЯ

Вычислите среднее следующих рядов чисел:

44.1 a) 3; 7; b) 3; 17; b) 13; 17; r) 33; 77.

44.2 **(a)** a) -1, -3, -5, 2, 4; b) -1, -3, -5, -2, 4; r) 1, 3, 5, -2, -4. 6) 1, -3, -5, -2, 4;

- 44.3 О Вычислите среднее:
 - а) всех однозначных целых чисел;
 - б) всех чётных однозначных целых чисел;
 - в) всех нечётных однозначных целых чисел;
 - г) всех простых однозначных целых чисел.
- 44.4 Какое число следует включить в набор -5, 3, 9, -2 для того, чтобы среднее стало равняться:
 - а) 0; б) -5; в) 10; г) 2015?
- Ученик хочет, чтобы его средняя отметка стала больше 4. Какое наименьшее количество пятёрок подряд он должен в дальнейшем для этого получить, если сейчас его отметки таковы:
 - a) 4, 4, 4, 4, 4, 3; B) 4, 4, 4, 4, 4, 2;
 - б) 4, 4, 4, 4, 3, 3; г) 4, 4, 3, 3, 2, 2?
- 44.6 При каком наименьшем *n* среднее ряда из *n* двоек и одной пятёрки будет:
 - а) меньше 3; в) меньше 2,1;
 - б) меньше 2,5; г) равняться 2,01?
- 144.7 Портной семь раз отмеряет, отбрасывает наименьший и наибольший результаты и вычисляет дисперсию оставшихся результатов. По правилам отрезать можно, если дисперсия окажется меньше 0,09. Для следующих семи результатов измерения найдите дисперсию и определите, можно отрезать или нет:
 - a) 14,8; 15,2; 15,0; 14,5; 15,1; 15,4; 14,9;
 - 6) 20,5; 19,6; 20,2, 19,4; 20,4, 20,3; 19,5.
- 44.8 а) Используя теорему 1 (см. § 44 учебника), докажите, что при увеличении каждого числа ряда на постоянное число а дисперсия ряда не изменяется.
 - б) Используя теорему 2 (см. § 44 учебника), докажите, что при умножении каждого числа ряда на постоянное число b дисперсия ряда умножается на b^2 .

ФУНКЦИЯ $y = x^2$

§ 45 функция $y = x^2$ и её график

Прочитайте п. 1 в § 45 учебника.

Найдите значение функции $y = x^2$, соответствующее заданному значению аргумента:

- 45.1
- а) 1; б) 3; в) 2; г) 0.

- 45.2
- a) $\frac{1}{2}$; 6) $-2\frac{1}{3}$; B) $-3\frac{1}{4}$; r) 1,6.

45.3

Найдите значения аргумента, которым соответствует заданное значение функции $y = x^2$:

- a) 4:
- б) 6.25;
- в) 0; г) 2,25.

Не выполняя построения, ответьте на вопрос, принадлежит ли графику функции $y = x^2$ заданная точка:

- a) A(2; 4);

- 45.4
- б) B(3; 6); в) C(4; 8); г) D(-3; 9).

- 45.5
- a) *R*(0,5; 0,25); в) *E*(1,5; 3); б) *S*(1,2; 2,4); г) *F*(-2,5; 6, r) F(-2,5; 6,25).

a)
$$K(\frac{1}{2}; \frac{1}{4})$$

6)
$$P(\frac{2}{3}; \frac{4}{9})$$

B)
$$L\left(-\frac{5}{7}; \frac{25}{49}\right);$$

a)
$$K\left(\frac{1}{2}; \frac{1}{4}\right)$$
; 6) $P\left(\frac{2}{3}; \frac{4}{9}\right)$; b) $L\left(-\frac{5}{7}; \frac{25}{49}\right)$; r) $M\left(-\frac{11}{12}; -\frac{121}{144}\right)$.

45.7

Постройте график функции $y = x^2$. С помощью графика найдите:

- а) значения функции при x = -2, x = 2;
- б) значения аргумента при y = 4;
- в) значения x, если y < 4, y > 4;
- г) значения y, если 0 < x < 2.

Используя выделенную часть графика функции $y = x^2$, найдите наибольшее и наименьшее значения функции и ответьте на вопрос, какому промежутку оси абсцисс соответствует выделенная часть.

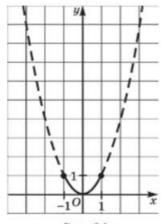
45.8

- а) На рис. 34;
- в) на рис. 36;
- б) на рис. 35;
- г) на рис. 37.

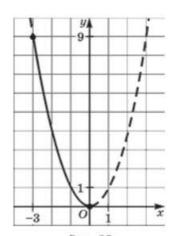
- 45.9
- а) На рис. 38; в) на рис. 40;
- б) на рис. 39:
- г) на рис. 41.

Постройте график функции $u = x^2$ на заданном промежутке:

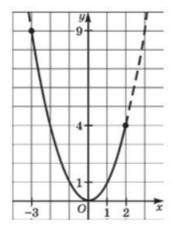
45.10

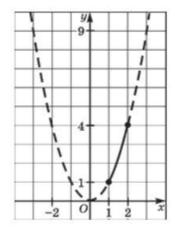

- a) (1; 3); 6) [-2; 2]; B) (0; 2); r) [-2; -1].

45.11


- a) $(-\infty; 1];$ 6) $[2; +\infty);$ B) $(-1; +\infty);$ r) $(-\infty; 0).$

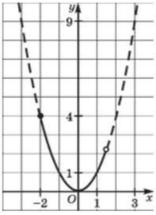
45.12

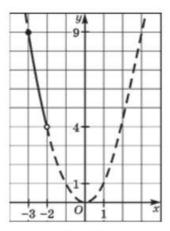

- a) [0; 1); 6) (-1; 3]; B) (0; 3]; r) [1; 2).



Puc. 34

Puc. 35





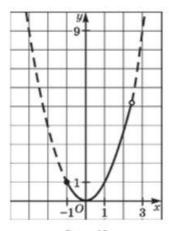
Puc. 36

Puc. 37

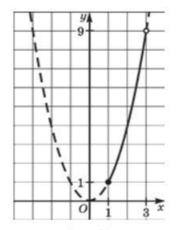
Puc. 38

Puc. 39

Прочитайте п. 2 в § 45 учебника.


Найдите значение функции $y = -x^2$, соответствующее заданному значению аргумента:

- 45.13


- a) -3; б) 0; в) -1; г) 4.

- **45.14** a) $-\frac{3}{2}$; 6) $3\frac{1}{4}$; B) $-\frac{1}{3}$; r) 2,5.

Puc. 40

Puc. 41

Найдите значение аргумента, которому соответствует заданное 45.15 значение функции $y = -x^2$:

a)
$$-9$$
; 6) $-\frac{1}{4}$; B) 0; r) -1 .

Не выполняя построения, ответьте на вопрос, принадлежит ли графику функции $y = -x^2$ заданная точка:

45.16

a)
$$A(-1; -1);$$
 6) $B(-2; 4);$ B) $C(4; -16);$ r) $D(-3; -6).$

r)
$$D(-3; -6)$$
.

45.17

a)
$$K(\frac{1}{2}; -\frac{1}{4});$$

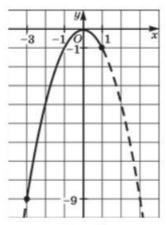
B)
$$E(1,5; -3)$$

a)
$$K\left(\frac{1}{2}; -\frac{1}{4}\right)$$
; b) $E(1,5; -3)$;
6) $N\left(-\frac{7}{13}; -\frac{49}{169}\right)$; r) $M(1,6; 2,56)$.

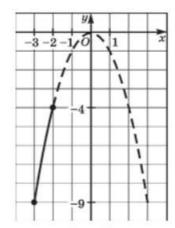
45.18

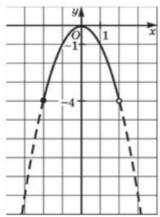
Постройте график функции $y = -x^2$. С помощью графика найдите:

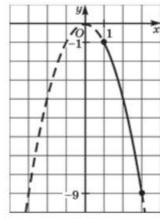
- а) значения функции при x = -1, x = 1;
- б) значения аргумента при y = -1;
- в) значения x, если y < -1, y > -1;
- г) значения y, если -1 < x < 0.


Используя выделенную часть графика функции $y = -x^2$, найдите наибольшее и наименьшее значения функции и укажите, какому промежутку оси абсцисс соответствует выделенная часть.

45.19


- а) На рис. 42; в) на рис. 44;
- б) на рис. 43; г) на рис. 45.

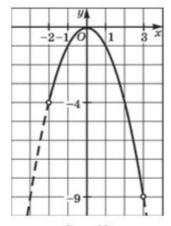



Puc. 42

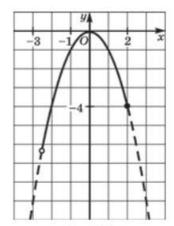
Puc. 43

Puc. 44

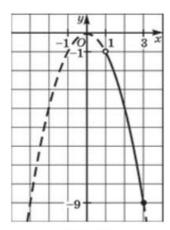
Puc. 45

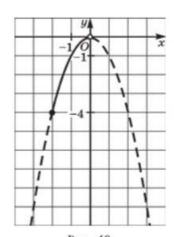

- 45.20
- а) На рис. 46; в) на рис. 48;
- б) на рис. 47; г) на рис. 49.

Постройте график функции $y = -x^2$ на заданном промежутке:


- 45.21

- a) [-3; 0]; 6) $[0; +\infty);$ B) (1; 3); Γ) $(-\infty; -1).$
- 45.22


- a) (-2; 1); 6) (-2; 3]; B) $[-1; +\infty);$ r) [-3; 1].


Puc. 46

Puc. 47

Puc. 48

Puc. 49

Прочитайте п. 3 в § 45 учебника.

Найдите наибольшее и наименьшее значения функции $y = x^2$ на заданном отрезке:

- 45.23

- a) [1; 2]; 6) [-2; -1]; B) [0; 1]; r) [-3; 0].
- 45.24

- a) [-1; 1]; б) [-2; 3]; в) [-3; 2]; г) [-1; 3].

Найдите наибольшее и наименьшее значения функции $y = -x^2$ на заданном отрезке:

- (45.25 a) [-1; 0]; 6) [0; 2]; b) [-2; 0]; r) [2; 3].
- 45.26 a) [-2; 2]; b) [-2; 1]; b) [-3; 2]; r) [-1; 3].
- Найдите наименьшее значение функции $y = x^2$ на заданном луче: a) $[-3; +\infty);$ б) $(-\infty; -2];$ в) $(-\infty; 1];$ г) $[1; +\infty).$
- Найдите наибольшее значение функции $y = -x^2$ на заданном луче: а) $(-\infty; 0];$ б) $[-\infty; 3];$ в) $[2; +\infty];$ г) $(-\infty; -3].$
- **45.29** О Постройте график функции $y = x^2$. С помощью графика найдите: а) значения функции при значении аргумента, равном -4; 0; 2;
 - б) значения аргумента, если значение функции равно 1; 0; 9;
 - в) наибольшее и наименьшее значения функции на отрезке [-1; 2];
 - г) значения аргумента, при которых 1 < y < 9.
- **45.30** Постройте график функции $y = -x^2$. С помощью графика найдите:
 - а) значения функции при значении аргумента, равном -3; 0; 1;
 - б) значения аргумента, если значение функции равно -16; -4; 0;
 в) наибольшее и наименьшее значения функции на отрезке [-3; 2];
 - г) значения аргумента, при которых $-4 \le y \le -1$.
- **45.31** О Постройте график функции $y = x^2$. С помощью графика определите:
 - а) значения функции, если $x \ge 1$;
 - б) значения аргумента, если 1 < y < 4;
 - в) наименьшее значение функции;
 - г) промежутки возрастания и убывания функции.
- **45.32** Постройте график функции $y = -x^2$. С помощью графика определите:
 - а) значения функции, если x < -2;
 - б) значения аргумента, если -9 ≤ y < -4;
 - в) наибольшее значение функции;
 - г) промежутки возрастания и убывания функции.

Найдите точки пересечения параболы и прямой:

- 45.33 O a) $y = x^2$ u y = 1; B) $y = x^2$ u y = 4; 6) $y = -x^2$ u y = -9; r) $y = -x^2$ u y = 0.
- 45.34 **O** a) $y = x^2$ и y = 2x; B) $y = x^2$ и y = -x; b) $y = -x^2$ и y = -x; c) $y = -x^2$ и y = x.

45.38

45.35 O a)
$$y = x^2$$
 и $y = x + 2$; B) $y = x^2$ и $y = -x + 6$; 6) $y = -x^2$ и $y = -x - 6$; г) $y = -x^2$ и $y = x - 2$.

B)
$$y = x^2$$
 $y = -x + 6$;

б)
$$y = -x^2$$
 и $y = -x - 6$;

45.36 • a)
$$y = x^2$$
 и $y = -2x + 3$; B) $y = -x^2$ и $y = 2x - 3$;

в)
$$y = -x^2$$
 и $y = 2x - 3$

a)
$$y = x^2$$
 u $y = -2x + 3$;

6)
$$y = -x^2$$
 u $y = x + 5$; r) $y = x^2$ u $y = x - 3$.

Найдите наибольшее и наименьшее значения функции $y = x^2$ на заданном промежутке:

a)
$$[0,5; +\infty);$$
 B) $[-0,3; +\infty);$

6)
$$\left(-\infty; \frac{6}{7}\right];$$
 r) $\left(-\infty; -\frac{1}{5}\right].$

Найдите наибольшее и наименьшее значения функции $y = -x^2$ на заданном промежутке:

45.39 O a)
$$\left[-2; \frac{3}{7}\right]$$
; 6) $(-0,7; 3]$; B) $[-1,5; 0]$; r) $\left[-1; \frac{1}{4}\right]$.

r)
$$\left[-1; \frac{1}{4}\right]$$

45.40 O a)
$$[-2,5; +\infty);$$
 6) $\left(-\infty; \frac{2}{9}\right];$ B) $[1,2; +\infty);$ r) $\left(-\infty; -\frac{2}{3}\right].$

$$\left(-\infty; \frac{2}{9}\right];$$
 B) $[1,2; +\infty);$

$$\Gamma$$
) $\left[-\infty; -\frac{2}{3}\right]$

45.41 О Не выполняя построения графика, найдите наименьшее значение функции
$$y = x^2$$
 на заданном отрезке:

a)
$$[-1,5; 0,3];$$
 B) $\left[-\frac{32}{101}; \frac{7}{19}\right];$

6)
$$\left[-\frac{8}{15}; 1,257\right];$$
 r) $\left[-\frac{45}{49}; \frac{23}{31}\right].$

r)
$$\left[-\frac{45}{49}; \frac{23}{31}\right]$$

45.42 • Не выполняя построения графика, найдите наибольшее значение функции
$$y = -x^2$$
 на заданном отрезке:

a)
$$[-2,3; 1,62];$$
 B) $\left[-\frac{10}{11}; 41,1\right];$

6)
$$\left[-\frac{13}{27}; \frac{29}{51} \right]$$

6)
$$\left[-\frac{13}{27}; \frac{29}{51} \right];$$
 r) $\left[-3, 4; \frac{1}{16} \right].$

a)
$$y = x^2$$
 u $y = -2x - 1$;

B)
$$y = x^2$$
 $y = 4x - 4$

a)
$$y = x^2$$
 и $y = -2x - 1$;
b) $y = x^2$ и $y = 4x - 4$;
6) $y = -x^2$ и $y = 2x + 1$;
r) $y = -x^2$ и $y = -4x + 4$.

$$r) y = -x^2 u y = -4x + 4.$$

С помощью графика функции $y = x^2$ определите, при каких значе-45.44 ниях х выполняется неравенство:

a)
$$x^2 < 1$$
;

6)
$$x^2 \ge 1$$
:

B)
$$x^2 \le 9$$
; r) $x^2 > 9$.

r)
$$x^2 > 9$$
.

45.45 С помощью графика функции $y = -x^2$ определите, при каких значениях х выполняется неравенство:

a)
$$-x^2 \le -4$$
:

a)
$$-x^2 \le -4$$
; 6) $-x^2 > -9$; B) $-x^2 \ge -4$; r) $-x^2 < -9$.

$$-x^2 \ge -4$$
;

$$-x^2 < -9$$

45.46 С помощью графика функции $y = x^2$ определите, при каких значениях х выполняется неравенство:

a)
$$1 < x^2 < 4$$
;

a)
$$1 < x^2 < 4$$
; 6) $4 \le x^2 \le 9$.

§ 4.6 ГРАФИЧЕСКОЕ РЕШЕНИЕ УРАВНЕНИЙ

 В одной системе координат постройте графики заданных функ-46.1 ций и найдите координаты точек их пересечения:

a)
$$y = x + 3$$
 и $y = 2x + 1$; B) $y = -x$ и $y = 3x - 4$;

B)
$$y = -x$$
 $y = 3x - 4$:

б)
$$y = x^2$$
 и $y = 9$;

r)
$$y = -x^2$$
 и $y = -2x$.

Определите, сколько корней имеет уравнение:

B)
$$x^2 = -\frac{x+1}{4}$$

6)
$$x^2 = -x - 3$$
; r) $x^2 = -3x + 1$.

r)
$$x^2 = -3x + 1$$

B)
$$-x^2 = \frac{4}{3}x$$
;

6)
$$\frac{2x-1}{2} = -x^2$$
; r) $4x + 2 = -x^2$.

r)
$$4x + 2 = -x^2$$
.

Решите графически уравнение:

$$6) x^2 = 4;$$

B)
$$x^2 = 0$$
;

$$x^2 = -1$$

6)
$$x^2 = -3x$$

B)
$$-x^2 = 2x$$
:

$$r) -x^2 = 3x$$

46.6 a)
$$x^2 = x + 6$$
; b) $-x^2 = x - 2$; b) $x^2 = x + 2$; c) $-x^2 = x - 6$.

6)
$$-x^2 = x - 2$$
;

B)
$$x^2 = x + 2$$
:

$$-x^2 = x - 6$$
.

46.7 O a)
$$x^2 = 2x + 3$$
; B) $x^2 = -2x + 3$; b) $-x^2 = -3x + 2$; c) $-x^2 = 2x - 3$.

B)
$$x^2 = -2x + 3$$

$$6) -x^2 = -3x + 2;$$

r)
$$-x^2 = 2x - 3$$

$$6) x^2 - 4x = -3;$$

r) $x^2 - x = 6$.

- a) $x^2 + x + 2 = 0$; B) $x^2 x + 6 = 0$; 6) $x^2 x + 4 = 0$; r) $x^2 + x + 8 = 0$.

- 46.10 **O** a) $x^2 2x + 1 = 0$; B) $x^2 + 2x + 1 = 0$; 6) $x^2 + 4x + 4 = 0$; F) $x^2 4x + 4 = 0$.

- **46.11 О** а) На графике функции y = -x + 4 найдите точку, абсцисса которой равна ординате.
 - б) На графике функции $y = x^2$ найдите точку, абсцисса которой равна ординате.

46.12 O

- а) На графике функции y = 2x 4 найдите точку, ордината которой на 8 меньше абсциссы.
- б) На графике функции $y = x^2$ найдите точку, абсцисса и ордината которой — противоположные числа.

46.13

- а) На графике функции $y = -x^2$ найдите точку, ордината которой на 6 меньше абсциссы.
- б) На графике функции $y = -x^2$ найдите точку, абсцисса которой на 2 больше ординаты.

Решите графически систему уравнений:

46.14 O a)
$$\begin{cases} y = x^2, \\ y = 4; \end{cases}$$

$$\begin{cases} y = x^2, \\ y = 9; \end{cases}$$

$$\begin{cases}
y = x^2, \\
y = 2x + 3;
\end{cases}$$

r)
$$\begin{cases} y = x^2, \\ 2x + y - 3 = 0. \end{cases}$$

46.15 • a)
$$\begin{cases} y = -x^2, \\ y = 3; \end{cases}$$

$$\begin{cases} y = -x^2, \\ y = x; \end{cases}$$

6)
$$\begin{cases} y = -x^2, \\ x - y - 2 = 0; \end{cases}$$
 r)
$$\begin{cases} y = -x^2, \\ 2x - y - 3 = 0. \end{cases}$$

r)
$$\begin{cases} y = -x^2, \\ 2x - y - 3 = 0. \end{cases}$$

§ 47 что означает в математике запись y = f(x)

Прочитайте п. 1 в § 47 учебника.

217

47.1 Дана функция y = f(x), где f(x) = 8x. Найдите:

a)
$$f(0)$$
, $f(-2)$, $f(1)$, $f(\frac{1}{2})$;

6)
$$f(a)$$
, $f(-a)$, $f(2a)$, $f\left(-\frac{1}{4}a\right)$;

B)
$$f(b+2)$$
, $f(1-b)$, $f(3b-8)$, $f(7-\frac{b}{8})$;

r)
$$f(c) + 3$$
, $f(-3c) - 1$, $-f(c - 3)$, $-f(c) + 1$.

47.2 Дана функция y = f(x), где f(x) = 5x + 6. Найдите:

a)
$$f\left(\frac{1}{4}\right)$$
, $f(-3)$, $f(0,5)$, $f\left(6\frac{2}{5}\right)$;

6)
$$f(p)$$
, $f(-2p)$, $f(\frac{3}{5}p)$, $-f(5p)$;

B)
$$f(a + 1)$$
, $f(5 - a)$, $f(a) - 6$, $f(\frac{a}{10}) - 3$;

r)
$$f(a-3)+1$$
, $f(a+4)-2$, $f(1-2a)$, $-f(\frac{a+6}{5})$.

47.3 Дана функция y = f(x), где f(x) = -3x + 2. Найдите:

a)
$$f(0)$$
, $f(\frac{2}{3})$, $f(-3)$, $f(-\frac{1}{2})$;

6)
$$f(-x)$$
, $-f(x)$, $f(2x)$, $f(x-2)$;

B)
$$f(x^2)$$
, $(f(x))^2$, $f(x-1)^2$, $(f(-x^2)-1)^2$;

r)
$$f(-x^3)$$
, $f(2x^3)$, $f(2x)^3$, $(f(2x))^3$.

47.4 Дана функция y = f(x), где $f(x) = x^2$. Найдите:

a)
$$f(-6)$$
, $-f(6)$, $f(0)$, $f\left(4\frac{1}{3}\right)$;

6)
$$f(3a)$$
, $f(-\frac{1}{3}a)$, $-f(a)$, $2f(a)$;

B)
$$f(x + 2)$$
, $f(5 - x)$, $f(2x + 3)$, $f(3x - 1)$;

r)
$$f(x) - 1$$
, $f(-2x) + 1$, $2f(x) + 3$, $-f(-x) + 3$.

200

47.5

Дана функция y = f(x), где $f(x) = -x^2$. Найдите:

a) f(-10), -f(10) - 1, f(8) + 1, f(6) + f(8);

- б) f(-a), -f(a), f(5a), -5f(a);
- B) f(b-1), $f(b^2-1)$, $f(b-1)^2$, $f(b^2)-1$;
- r) $f(-x^3)$, $f(2x^3)$, $f(2x)^3$, $-2f(x^3)$.

47.6

Дана функция y = f(x), где $f(x) = x^2$. Найдите:

- a) f(-5), f(7) + 1, f(5) 4, f(7) f(5);
- 6) f(2x + 5), f(2x) + 5, 2f(x) + 5, 2f(x + 5);
- B) $f(x^2)$, $f(x^2-2)$, $f(x^2)-2$, $f(x-2)^2$;
- r) $f(-x^3)$, $3f(x^3)$, $f(3x^3)$, $(-f(3x))^3$.

47.7

Дана функция y = f(x), где $f(x) = x^2$. Найдите:

- a) f(-12) 44, f(9) 1, f(7) f(3), f(3) + f(4);
- 6) f(a + b), f(a) + b, f(b) a, f(a) + f(b);
 - B) f(ab), af(b), -bf(a), $f\left(\frac{a}{b}\right)$;
 - r) f(x-1) + f(x+1), f(x+2) f(x), $\frac{f(x)-1}{f(x-1)}$, $\frac{f(x+2)}{f(x)-4}$.

47.8

Дана функция y = f(x), где f(x) = 1,6x + 3,5. При каких значениях x выполняется равенство:

a) f(x) = -4.5;

- B) f(x) = 0.3;
- 6) f(x-1) = 0.6x;
- r) f(x + 2) = 8.3x?

47.9

Дана функция y = f(x), где $f(x) = x^2$. При каких значениях x выполняется равенство:

a) f(x) = 144;

B) f(x) = 100;

6) f(x) = -10x;

r) f(x) = 8x?

47.10 O

Дана функция y = f(x), где $f(x) = x^2$. При каких значениях x выполняется равенство:

a) f(x-2) = 64;

B) f(x + 1) = 81;

6) f(2x) = 49;

r) f(-3x) = 121?

47.111 O

Дана функция y = f(x), где $f(x) = x^2$. При каких значениях x выполняется равенство:

- a) f(x-9) = f(x+5);
- 6) f(2x-7) = f(2x+3);
- B) f(x-1) = f(x-7);
- r) f(1+3x) = f(3x+5)?

Прочитайте п. 2 в § 47 учебника.

Дана функция y = f(x), где $f(x) = \begin{cases} 3x - 2, \text{ если } x < -3; \\ -2x + 5, \text{ если } x \ge -3. \end{cases}$ 47.12 O

Вычислите:

- a) f(1);
- б) f(-3):
- B) f(-4):

Дана функция y = f(x), где $f(x) = \begin{cases} x + 5,7, \text{ если } x < -1,3; \\ -5, \text{ если } x \ge -1.3. \end{cases}$ 47.13

- Вычислите: a) f(-5);
 - б) f(-20);
- B) f(0):
- r) f(1,273).

Дана функция y = f(x), где $f(x) = \begin{cases} x^2, \text{ если } x < -4.5; \\ -4x + 7, \text{ если } x \ge -4.5. \end{cases}$ 47.14 O

- Вычислите: a) f(-5);
- б) f(-4):
- в) f(3); г) f(-4,5).

Постройте график функции:

47.15 O a) $y = \begin{cases} 1, & \text{если } -4 \le x \le -1; \\ 2x + 3, & \text{если } -1 < x \le 1; \end{cases}$ 6) $y = \begin{cases} 0, & \text{если } -5 \le x \le -2; \\ x + 2, & \text{если } -2 < x \le 2. \end{cases}$

47.16 О а) $y = \begin{cases} -x + 1, \text{ если } 2 \le x \le 1; \\ x - 1, \text{ если } 1 < x \le 4; \end{cases}$

б)
$$y = \begin{cases} x + 3, & \text{если } -4 \le x \le 0; \\ -x + 3, & \text{если } 0 < x \le 4. \end{cases}$$

47.17 O a) $y = \begin{cases} -1, & \text{если } -4 \le x < -1; \\ -x^2, & \text{если } -1 \le x \le 2; \end{cases}$ 6) $y = \begin{cases} x^2, & \text{если } -2 \le x \le 3; \\ 9, & \text{если } 3 < x \le 5. \end{cases}$

47.18 О а) $y = \begin{cases} x^2, \text{ если } -3 \le x \le 0; \\ x, \text{ если } 0 < x \le 4; \end{cases}$ б) $y = \begin{cases} -x, \text{ если } -4 \le x < 0; \\ -x^2, \text{ если } 0 \le x \le 2. \end{cases}$

47.19 О а) $y = \begin{cases} x + 3, \text{ если } -3 \le x \le -1; \\ x^2, \text{ если } -1 < x \le 2; \end{cases}$

б) $y = \begin{cases} -x^2, \text{ если } -3 \le x \le 0; \\ 2 - 2x, \text{ если } 0 \le x \le 3. \end{cases}$

47.20 О а)
$$y = \begin{cases} -x^2, & \text{если } -1 \le x \le 2; \\ 2x - 8, & \text{если } 2 < x \le 5; \end{cases}$$

б)
$$y = \begin{cases} x^2, & \text{если } -3 \le x < 2; \\ 6 - x, & \text{если } 2 \le x \le 7. \end{cases}$$

Для функции из упражнения 47.18 а) найдите: 47.21

- а) значения функции при значении аргумента, равном -1; 0; 2; 4;
- б) значения аргумента, если значение функции равно 0; 1; 4;
- в) наибольшее и наименьшее значения функции на отрезке [-1; 2];
- г) промежутки возрастания и убывания функции.

Для функции из упражнения 47.19 б) найдите: 47.22

- а) область определения;
- б) наименьшее и наибольшее значения:
- в) промежутки убывания и возрастания;
- г) точки разрыва.

47.23 O Для функции из упражнения 47.20 б) найдите:

- а) область определения;
- б) множество значений функции;
- в) промежутки убывания и возрастания;
- г) значения аргумента, при которых значение функции равно нулю, больше нуля, меньше нуля.

47.24 О Дана функция y = f(x), где $y = \begin{cases} x^2, \text{ если } -4 \le x < 1; \\ 2x, \text{ если } 1 < x \le 5. \end{cases}$

Выясните, корректно ли предложенное задание, и если да, то выполните его:

- а) вычислите f(-4); в) вычислите f(-4.5);
- б) вычислите f(1); г) вычислите f(4,9).

47.25 O Можно ли считать, что y = f(x) — функция, где

a)
$$f(x) = \begin{cases} x^2, \text{ если } -4 \le x \le 0; \\ 2x, \text{ если } x \ge 1; \end{cases}$$

б)
$$f(x) = \begin{cases} x + 2, \text{ если } x < 0; \\ x^2, \text{ если } x \ge -1? \end{cases}$$

Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} -x + 3,4, \text{ если } x < -2; \\ -2x + 5, \text{ если } -2 \le x \le 3,5; \\ x^2, \text{ если } x > 3,5. \end{cases}$

Вычислите:

a)
$$f(-3)$$
;

б)
$$f(-2)$$
;

B)
$$f(3)$$
;

47.27 О Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} 2 - x, \text{ если } -4 < x < -2; \\ x^2, \text{ если } -2 \le x \le 2; \\ 0,5x + 3, \text{ если } 2 < x < 4. \end{cases}$

- а) Вычислите f(-4), f(-2), f(1), f(4);
- б) постройте график функции y = f(x);
- в) с помощью графика найдите значения аргумента, если f(x) = 1, f(x) = 0, f(x) = 5, f(x) = 6.

47.28 О Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} x^2, \text{ если } -1 \le x \le 2; \\ x + 2, \text{ если } x > 2. \end{cases}$

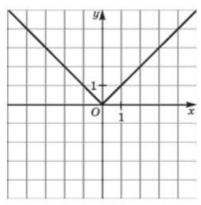
- а) Вычислите f(0), f(-2), f(2), f(3);
- б) постройте график функции y = f(x);
- в) с помощью графика найдите значения аргумента, если f(x) = 1, f(x) = 0, f(x) = 4, f(x) = -1.

Постройте график функции:

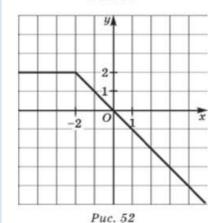
$$\begin{array}{c} \textbf{47.29} \quad \textbf{O} \quad \textbf{a)} \ y = \begin{cases} x^2, \ \text{если} \ -2 \leqslant x \leqslant -1; \\ x, \ \text{если} \ -1 < x \leqslant 1; \\ -x^2, \ \text{если} \ 1 < x \leqslant 2; \\ \end{cases} \\ \textbf{6)} \ y = \begin{cases} -1, \ \text{если} \ -4 \leqslant x \leqslant -1; \\ 2x, \ \text{если} \ -1 < x \leqslant 0; \\ -x^2, \ \text{если} \ 0 < x \leqslant 3. \end{cases} \end{array}$$

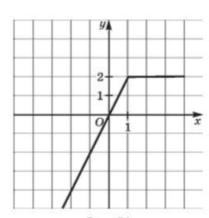
а)
$$y = \begin{cases} x+2, & \text{если } -4 \le x \le -2; \\ 0, & \text{если } -2 < x \le 0; \\ x^2, & \text{если } 0 < x \le 3; \end{cases}$$

б)
$$y = \begin{cases} \frac{x}{2} + 2, & \text{если } -6 \leqslant x \leqslant -2; \\ x^2, & \text{если } -2 < x \leqslant 1; \\ 3 - 2x, & \text{если } 1 < x \leqslant 5. \end{cases}$$

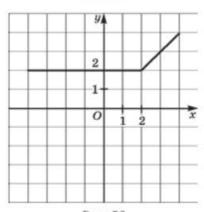

Используя заданный график функции, установите:

- а) какова область определения функции y = f(x);
- б) чему равны наименьшее и наибольшее значения функции;
- в) является ли функция непрерывной; если нет, то в каких точках она претерпевает разрыв;
- г) при каких значениях аргумента значение функции равно нулю, больше нуля, меньше нуля;
- д) где функция возрастает, где убывает.

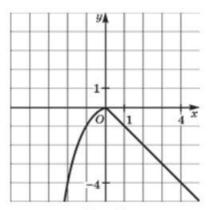

Ответьте на эти вопросы для функции, график которой изображён на следующих рисунках:


47.31 О а) На рис. 50; б) на рис. 51; в) на рис. 52; г) на рис. 53.

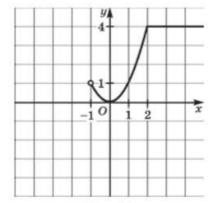
47.32 О а) На рис. 54; б) на рис. 55; в) на рис. 56; г) на рис. 57.



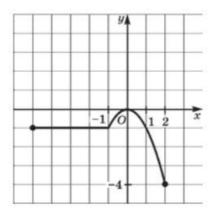
Puc. 50

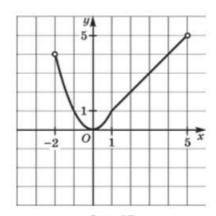


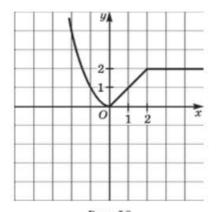
Puc. 51

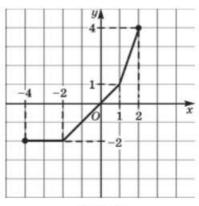


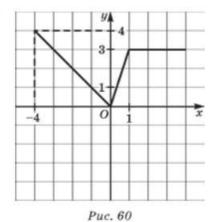
Puc. 53

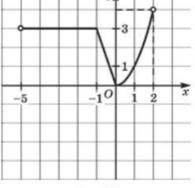



Puc. 54

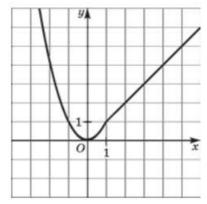

Puc. 55

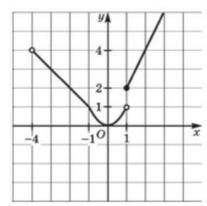

Puc. 56

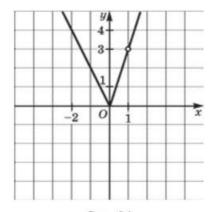

Puc. 57

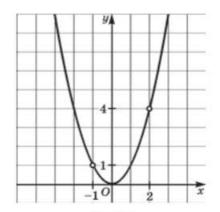


Puc. 58


Puc. 59







Puc. 62

Puc. 63

Puc. 64

Puc. 65

47.33 О а) На рис. 58; б) на рис. 59; в) на рис. 60; г) на рис. 61.

47.34 О а) На рис. 62; б) на рис. 63; в) на рис. 64; г) на рис. 65.

47.35 О Дана функция y = f(x), где $f(x) = \begin{cases} -x^2, & \text{если } -2 \le x \le 0; \\ 0, & \text{если } 0 < x \le 3. \end{cases}$

- а) Вычислите f(-2), f(0), f(2), f(-1), f(3);
- б) постройте график функции y = f(x);
- в) опишите свойства функции y = f(x) с помощью построенного графика.

47.36 О Дана функция y = f(x), где $f(x) = \begin{cases} x^{-}, \text{ если } -2 \leqslant x \leqslant 0; \\ 4x, \text{ если } 0 < x \leqslant 1; \\ 4, \text{ если } 1 < x < 3. \end{cases}$

- а) Вычислите f(-1), f(2), f(1), f(1,5), f(-2);
- б) постройте график функции y = f(x);
- в) опишите свойства функции y = f(x) с помощью построенного графика.

47.37 О Дана функция y = f(x), где $f(x) = \begin{cases} -1, \text{ если } -3 \le x \le -1; \\ -x^2, \text{ если } -1 < x \le 1; \\ x, \text{ если } 1 < x \le 6. \end{cases}$

- а) Вычислите f(-2), f(4), f(-1), f(1), f(5);
- б) постройте график функции y = f(x);
- в) опишите свойства функции y = f(x) с помощью построенного графика.

47.38 О Дана функция y = f(x), где $f(x) = \begin{cases} 1, & \text{если } -3 \le x \le -1; \\ x^2, & \text{если } -1 < x \le 2; \\ 2x + 2, & \text{если } 2 < x < 4. \end{cases}$

- а) Вычислите f(-3), f(2), f(0), f(-1), $f\left(\frac{1}{2}\right)$;
- б) постройте график функции y = f(x);
- в) опишите свойства функции y = f(x) с помощью построенного графика.

47.39 а) Даны функции y = f(x) и y = g(x), где f(x) = 2x - 5, g(x) = -3x + 4. При каком значении x выполняется равенство f(x-1) = g(x+1)?

б) Даны функции y = f(x) и y = h(x), где f(x) = -4x - 1, h(x) = 2x + 9. При каком значении x выполняется равенство f(x + 2) = h(x - 3)?

Дана функция y = f(x), где $f(x) = x^2$. При каком значении x вы-47.40 полняется равенство:

a)
$$f(x+1) = f(x-2)$$
;

6)
$$f(x-4) = f(x) - 4$$
?

Даны функции y = f(x) и y = g(x), где $f(x) = -x^2$, g(x) = 3x - 10. При 47.41 каких значениях х выполняется равенство:

a)
$$f(x+2) = g(x+2);$$

a)
$$f(x+2) = g(x+2);$$
 6) $f(1-x) = g\left(\frac{1-x^2}{3}\right)$?

Прочитайте п. 3 в § 47 учебника.

Постройте график функции:

47.42 a)
$$y = \frac{2x^2}{x}$$
; b) $y = \frac{x^2 - 9}{x - 3}$; b) $y = -\frac{x^2}{x}$; r) $y = \frac{x^2 - 4}{x + 2}$.

$$y = \frac{x^2 - 9}{x^2 - 9}$$

B)
$$y = -\frac{x^2}{}$$

r)
$$y = \frac{x^2 - 4}{x^2 - 4}$$

47.43 a)
$$y = \frac{2x^2 - 8x + 8}{x - 2}$$
; b) $y = \frac{x^3 + 6x^2 + 9x}{x^2 + 3x}$.

$$6) y = \frac{x^3 + 6x^2 + 9x}{x^2 + 9x}$$

47.44 a)
$$y = \frac{x^3 + 3x^2}{x + 3}$$
; b) $y = \frac{-x^3 + x^2}{x - 1}$.

$$6) \ y = \frac{-x^3 + x^2}{1}$$

47.45 a)
$$y = \frac{-x^4 + x^2}{(x-1)(x+1)}$$
; b) $y = \frac{x^4 - 4x^2}{(x-2)(x+2)}$.

$$\text{ f) } y = \frac{x^4 - 4x^2}{(x - 2)(x + 2)}.$$

Решите графически уравнение:

47.46 a)
$$\frac{2x^4}{x^3} = -x^2$$
;

B)
$$x^2 = \frac{3x^8}{x^7}$$
;

$$6) \ \frac{x^2 - 4}{x^2 - 2} = x^2;$$

$$\Gamma$$
) $\frac{x^2-4}{x+2}=-x^2$.

47.47 a)
$$\frac{x^3 - x^2}{x - 1} = -2x + 3;$$
 B) $\frac{x^3 - 3x^2}{x - 3} = x + 6;$

B)
$$\frac{x^3-3x^2}{x-3}=x+6$$

$$6) - \frac{x^3 + 2x^2}{2} = x - 2;$$

6)
$$-\frac{x^3+2x^2}{x+2}=x-2;$$
 r) $-\frac{4x^2+x^3}{x+4}=2x-8.$

При каких значениях р данное уравнение имеет один корень: 47.48

a)
$$\frac{2x^3 + 6x^2}{2x + 6} = p;$$
 B) $\frac{9x^2 - 3x^3}{3x - 9} = p;$

B)
$$\frac{9x^2-3x^3}{3x-9}=p$$

$$6) \frac{x^4 - 4x^3}{x^2 - 4x} = p;$$

6)
$$\frac{x^4 - 4x^3}{x^2 - 4x} = p$$
; r) $\frac{x^4 - 2x^3}{x^2 - 2x} = p$?

Задайте аналитически кусочную функцию по её графику, представленному на следующих рисунках:

а) На рис. 50; б) на рис. 51; в) на рис. 52; г) на рис. 53. 47.49

а) На рис. 54; б) на рис. 55; в) на рис. 56; г) на рис. 57. 47.50

а) На рис. 58; б) на рис. 59; в) на рис. 60; г) на рис. 61. 47.51

а) На рис. 62; б) на рис. 63; в) на рис. 64; г) на рис. 65. 47.52

При каких значениях b уравнение f(x) = b, где 47.53

$$f(x) = \begin{cases} x + 6, \text{ если } x \leq -2; \\ x^2, \text{ если } -2 < x \leq 3, \end{cases}$$

а) имеет один корень: в) имеет три корня;

б) имеет два корня; г) не имеет корней?

При каких значениях b уравнение f(x) = b, где 47.54

$$f(x) = \begin{cases} \frac{x+3}{2}, & \text{если } x \leq -1; \\ x^2, & \text{если } -1 < x \leq 2, \end{cases}$$

а) имеет один корень; в) имеет три корня;

б) имеет два корня; г) не имеет корней?

При каких значениях b уравнение f(x) = b, где 47.55

$$f(x) = \begin{cases} -2x - 2, \text{ если } x \leqslant -1; \\ -x^2, \text{ если } -1 < x \leqslant 2, \end{cases}$$

а) имеет один корень; в) имеет три корня;

б) имеет два корня: г) не имеет корней?

При каких значениях b уравнение f(x) = b, где 47.56

$$f(x) = \begin{cases} x^2, & \text{если } x \leq 1; \\ -2, & \text{если } x > 1, \end{cases}$$

а) имеет один корень;

б) имеет два корня;

в) имеет бесконечное множество корней;

г) не имеет корней?

Решите графически уравнение: 47.57

a)
$$f(x) = 1$$
:

$$f(x) = 4$$

$$f(x) = 9;$$

a)
$$f(x) = 1$$
; b) $f(x) = 4$; b) $f(x) = 9$; r) $f(x) = 0$,

если
$$f(x) = \begin{cases} 0.5x + 5, \text{ если } -10 \leqslant x \leqslant -2; \\ x^2, \text{ если } -2 < x \leqslant 3. \end{cases}$$

Решите графически данное уравнение, если 47.58

$$f(x) = \begin{cases} -x^2, \text{ если } -2 \le x \le 1; \\ 3x - 7, \text{ если } 1 < x \le 3; \end{cases}$$

a)
$$f(x) = 1$$

a)
$$f(x) = 1$$
; b) $f(x) = -4$; b) $f(x) = 2$; r) $f(x) = 0$.

B)
$$f(x) = 2$$

$$\mathbf{r}) f(x) = 0.$$

Дана функция y = f(x), где $f(x) = \begin{cases} 2x, \text{ если } 0 < x \le 2; \\ 4, \text{ если } 2 < x \le 7; \end{cases}$ 47.59

Сколько целочисленных корней имеет уравнение:

a)
$$f(x) = 4$$
;

a)
$$f(x) = 4$$
; 6) $f(x) = 1$; B) $f(x) = 5$; r) $f(x) = 0$?

B)
$$f(x) = 5$$
:

$$f(x) = 0$$

Дана функция
$$y = f(x)$$
, где $f(x) = \begin{cases} -x^2, \text{ если } x \leq 0; \\ x^2, \text{ если } 0 < x \leq 2; \\ 4, \text{ если } 2 < x \leq 6; \\ 16 - 2x, \text{ если } x > 6 \end{cases}$

Сколько целочисленных корней имеет уравнение:

a)
$$f(x) = 0$$
;

6)
$$f(x) = 1$$
:

a)
$$f(x) = 0$$
; 6) $f(x) = 1$; B) $f(x) = -3$; r) $f(x) = 4$?

r)
$$f(x) = 4$$
?

§ 48 ГРУППИРОВКА ДАННЫХ

Заполните таблицу значений функции y = x²:

x	0	1	2	3	4	5	6	7	8	9
y										

- а) Сколько значений лежит в пределах от 25 до 50?
- б) Заполните сгруппированную таблицу распределения значений функции y = x²:

Промежуток	От 0 до 25	От 25 до 50	От 50 до 75	От 75 до 100
Число значений функции $y = x^2$				

в) Заполните сгруппированную таблицу распределения частот значений функции $y = x^2$:

Промежуток	От 0 до 25	От 25 до 50	От 50 до 75	От 75 до 100
Частота значений функции $y = x^2$, %				

- г) Постройте круговую диаграмму распределения частот.
- - б) Найдите количество всех натуральных чисел, квадраты которых меньше 400, но больше 200.
 - в) Используя таблицу квадратов целых чисел, заполните таблицу распределения значений функции $y = x^2$, x = 0, 1, 2, ..., 28, 29.

Промежуток	От 0	От 200	От 400	От 600	От 800
	до 200	до 400	до 600	до 800	до 1000
Число значений функции $y = x^2$					

- г) Постройте таблицу распределения процентных частот.
- 48.3 о а) Заполните таблицу распределения значений функции $y = x^2$, x = 0, 1, 2, ..., 28, 29:

Промежуток	От 0 до 300	От 300 до 600	От 600 до 1000
Число значений функции $y = x^2$			

- б) Переведите эту таблицу в таблицу распределения процентных частот.
- в) Постройте круговую диаграмму распределения процентных частот.
- г) Разбейте промежуток от 0 до 1000 на три промежутка так, чтобы каждому из них принадлежало по 10 значений этой функции.

- 48.4 О Постройте прямоугольник с вершинами в точках A(-2; 0), B(-2; 4), C(2; 4), D(2; 0).
 - а) Сколько точек, у которых обе координаты целые числа, принадлежит полученному прямоугольнику (включая его границы)?
 - б) Изобразите часть графика функции $y = x^2$, которая принадлежит этому прямоугольнику.
 - в) Сколько точек из пункта а) лежит ниже графика; на графике;выше графика? Заполните таблицу распределения точек:

Положение точки	Ниже графика	На графике	Выше графика
Число точек			

- Постройте прямоугольник с вершинами в точках K(-3; 0), L(-3; 9), M(3; 9), N(3; 0) и часть графика функции y = x², которая принадлежит этому прямоугольнику. Определите, сколько точек, у которых координаты целые числа, принадлежит прямоугольнику (включая его границы) и лежит ниже построенного графика; на нём; выше него. Заполните таблицу по образцу, приведённому в задаче 48.4.
- 48.6 На каждом этаже в подъезде девятиэтажного дома по одной двухкомнатной, по одной трёхкомнатной и по две однокомнатных квартиры. В таблице приведены сведения о расходе электроэнергии за декабрь.

№ квартиры	кВт/ч	№ квартиры	кВт/ч	№ квартиры	кВт/ч
1	385	13	406	25	357
2	124	14	112	26	143
3	230	15	220	27	210
4	130	16	110	28	167
5	304	17	290	29	420
6	168	18	98	30	152
7	256	19	215	31	263
8	131	20	150	32	87
9	410	21	340	33	440
10	205	22	136	34	264
11	307	23	276	35	233
12	160	24	67	36	172

- а) Сколько различных показаний расхода электроэнергии получилось?
- б) Какие номера, судя по показаниям расхода электроэнергии, имеют трёхкомнатные квартиры?
- в) В скольких квартирах расход оказался меньше 100 кВт/ч?
- г) В скольких квартирах расход оказался больше 400 кВт/ч?

48.7

Используя данные задачи 48.6:

 а) заполните сгруппированную таблицу распределения расхода электроэнергии;

Расход электроэнергии, кВт/ч	От 0	От 100	От 200	От 300	От 400
	до 100	до 200	до 300	до 400	до 500
Число квартир					

- б) переведите её в таблицу распределения процентных частот, постройте круговую диаграмму;
- в) заполните таблицу распределения расхода электроэнергии, сгруппированную иначе:

Расход электроэнергии, кВт/ч	От 0 до 150	От 150 до 300	От 300 до 450
Число квартир			

 г) переведите таблицу пункта в) в таблицу распределения процентных частот, постройте круговую диаграмму.

48.8

Пусть $f(x) = \begin{cases} *, если \ x \le 0, \\ \blacksquare, если \ x > 0, \end{cases}$ а вместо символов * и \blacksquare можно поста-

вить либо x^2 , либо $-x^2$.

- а) Сколько разных функций y = f(x) может быть задано таким образом?
- б) Изобразите графики функций y = f(x).
- в) На графиках скольких функций y = f(x) есть точки, расположенные ниже оси абсцисс?
- г) Графики скольких функций y = f(x) симметричны относительно начала координат?

ОТВЕТЫ

Глава 1

- **5.1 1.18.** a) $9\frac{5}{6}$; б) 2,32; в) $5\frac{2}{15}$; г) 2,24. **1.39.** a) $a\left(1+\frac{p}{100}\right)^3$; б) 13310 р.
 - **1.41.** a) 29 000; б) 41 000. **1.42.** a) $\frac{1}{8}$; б) 15. **1.45.** a) a < b; б) a < b.
 - **1.46.** a) a > b; б) a < b. **1.47.** a) a < b; б) a > b. **1.48.** a) a < b; б) a > b. **1.49.** a) a < b; б) a > b.
- 2.22. a) 50; 6) 10. 2.23. a) 7; 6) 6.
- 3.32. 353 квартиры, 439 квартир. 3.33. 345 мест. 3.34. 65 квартир. 3.35. 32 книги. 3.36. 39 деталей, 117 деталей. 3.37. 168 деталей, 178 деталей. 3.38. 18 т, 21,6 т. 3.39. 5 лет. 3.40. 22 яблони, 62 яблони. 3.41. а) 20 деталей; б) 20 деталей; в) 17 деталей; г) 15 деталей. 3.42. 5 ч, 8 ч. 3.43. 12 км/ч, 30 км/ч, 60 км. 3.44. а) 22, 40, 58, 76, 94; б) 111. 3.45. а) 366; б) 946. 3.46. 40 000 р. 3.47. а) На 26,5 %; б) увеличилась на 5 %. 3.48. а) 153,5 %; б) увеличился на 0,1 %. 3.49. Меньше на 4 %. 3.50. На 20 %. 3.51. На 10 %. 3.52. 20 %. 3.53. На 20 %. 3.54. На 5 %. 3.55. На 60 %. 3.56. 70 %.
- § 4.11. а) $7\frac{2}{3}$; б) 26; в) $3\frac{3}{4}$; г) -25. 4.12. а), в) x любое число; б), г) нет корней. 4.13. а) -10; б) 3; в) 1; г) -9. 4.14. а) -0,5; б) -0,8;
 - в) 4; г) -2,5. **4.15.** а) -9,4; б) $\frac{5}{6}$; в) $-\frac{10}{9}$; г) 2,5. **4.16.** а), в) нет корней;
 - б), г) x любое число. **4.17.** a) 2; б) 2. **4.18.** a) -2,4; б) 10,4. **4.19.** a) p = 3; б) a = 1. **4.20.** a) Нет таких значений a; б) при $a \neq 0$,5; в) при a = 0,5.
 - **4.21.** а) При a=-2; б) при $a\neq \frac{1}{3}$, $a\neq -2$; в) при $a=\frac{1}{3}$. **4.22.** а) 3, -3;
 - б) 4, -4; в) 1; г) нет корней. **4.23.** а) 2, $-\frac{2}{3}$; б) -1,5, -3,5; в) $7\frac{1}{3}$, -4;
 - г) 2,25, -1,75. 4.24. а) 3; б), в) нет корней; г) -4. 4.25. а) 0; б) 0,4.

- § 5
- 5.1. 11,5 н 4,6. 5.2. 120, 64, 312. 5.3. 15 н 9. 5.4. 35, 28, 21. 5.5. 25, 27, 29. 5.6. 271. 5.7. 1000. 5.8. 7 см, 14 см, 10 см. 5.9. 40°, 120°, 20°. 5.10. 6 см, 8 см, 10 см. 5.11. 40°, 60°, 80°. 5.12. 10 см, 20 см, 14 см. 5.13. 32, 16, 27 книг. 5.14. 75 человек, 50 человек, 185 человек. 5.15. 90 р., 70 р. 5.16. 280 ц. 5.17. 20 штук, 60 штук. 5.18. 55 км. 5.19. 60 км/ч, 90 км/ч. 5.20. 60 км или 90 км. 5.21. 12 км/ч. 5.22. 1 ч 12 мин. 5.23. 157 км. 5.24. 75 км/ч, 80 км/ч. 5.25. 12 км/ч. 5.26. 15 км/ч. 5.27. 8 км/ч. 5.28. 3 км/ч. 5.29. 5000 р., 5400 р. 5.30. 18 листов. 5.31. 180 кг, 60 кг. 5.32. 300 поддонов. 5.33. 57. 5.34. 2745. 5.35. 12540. 5.36. 200 кг. 5.37. 90000 р., 36000 р., 15000 р. 5.38. 20,2 р. 5.39. 0,25 кг. 5.40. 441 г. 5.41. 5%. 5.42. 10 кг. 5.43. 2.23 кг. 5.44. 3 : 2. 5.45. 28 учеников.
- **5.41.** 5%. **5.42.** 10 кг. **5.43.** $2\frac{23}{30}$ кг. **5.44.** 3 : 2. **5.45.** 28 учеников.
- 5.46. 6 дней. 5.47. 36 учеников. 5.48. 40 мужчин, 80 женщин.
- €6
 - **6.43.** a) 3, -3; b) 3,5, -1,5; b) -3; 0,4; r) 0, -8. **6.44.** a) -3 < x < 3; b) $x \ge 3,5$; $x \le -1,5$; b) x < -3; x > 0,4; r) -8 $\le x \le 0$. **6.45.** B, C, D, A. **6.46.** 20%. **6.47.** a) $\frac{1}{3}$; b) $\frac{2}{7}$; b) $\frac{5}{42}$; r) $\frac{11}{21}$. **6.48.** a) 0,1; b) 0,06; b) 0,22; r) 0,68. **6.49.** a) (0; 3); b) [-2,5; 3]; b) (-\infty; +\infty); r) [0; +\infty). **6.50.** a) [1; 2); b) [0; 1]; b) [-1; 0); r) (2; 3).
- 7.1. a) 7, 3, 7, 0, 4, 7, 7, 4, 7, 17; 6) 17; B) 17; F) 10. 7.2. 6) 10 %; B) 7, 50 %.
 7.3. 6) 6; B) 12; F) 21. 7.4. a) 20; 6) 6; B) 18; F) 60.

Глава 2

- § 8
- **8.29.** a) (4; 0), (0; 8); 6) (-1; 0), (0; 1). **8.30.** a) (-2; 7); 6) (-5; 7).
- § 9
- **9.20.** a) (5; 5); 6) (8; 4), $\left(\frac{20}{7}; \frac{40}{7}\right)$. **9.21.** a) 10; 6) 5; B) 120; r) -14.
- 9.22. a) 35; б) 2; в) 3; г) -5. 9.23. a) 13; б) 12; в) -1; г) 0. 9.24. a) 1; б) 0,2; в) любое число; г) 1. 9.34. a) 2; б) ни при каком. 9.36. a) (3; 20), (6; 15), (9; 10), (12; 5); б) (18; 5), (21; 10), (24; 15), (27; 20). 9.37. a) 3 розы и 5 гвоздик. 9.38. 16. 9.39. 70 км/ч, 50 км/ч. 9.40. 4 евро. 9.41. 12 кг.
- § 10
- **10.44.** a) (6; 6); 6) (-1; -1). **10.45.** a) (-3; 3); 6) (4; -4). **10.46.** a) (15; 30); 6) (21; 7). **10.47.** a) m = 7; 6) m = 6.5; B) m = -27; r) m = 3.

10.48. a) $k = \frac{1}{3}$; б) k = -6; в) k = 2; г) k = -36. **10.72.** a) 90 км, 1,5 ч, 60 км/ч;

- б) 2 ч; в) 1 ч, 90 км/ч; г) 4,5 ч, 180 км; д) 72 км/ч, 40 км/ч. 10.73. а) 3 ч;
- б) 9,5 ч; в) 20 км; г) на третьем; 4 км/ч, 3 км/ч, 5 км/ч, 2 км/ч;
- д) $3\frac{1}{13}$ км/ч, $2\frac{2}{19}$ км/ч.
- § 11

11.15. a) (2; 7); б) $\left(-\frac{1}{3}; -26\right)$; в) (5; -2); г) $\left(-\frac{3}{7}; 21\right)$. **11.16.** a) y = 3x - 2;

- 6) y = -2.5x + 6; B) y = -5x + 3; r) y = 1.5x + 3. 11.17. a) y = -x 2;
- 6) y = 2x + 2; B) y = x + 1; P) y = -3x 5. 11.21. a) x = 4; 6) x < 4; B) x > 4;
- г) $x \le 4$. 11.22. $k \ge 0$, m < 0, a > 0, b = 0. 11.26. a) 5; б), г) ни при каком;
- в) -2. 11.30. Нет.
- **§ 12**

12.1. а) 25; 4; б) 0,24; в) «н» — 0,08, «2» — 0,12, «3» — 0,2, «4» — 0,36.

г)	Оценка	н	2	3	4	5
	Процентная доля оценки	8	12	20	36	24

12.2. a) 3, 2, -1, 1, 0, 0, 3, 3, 2, 3, 3, -1, -1; 6) 13, 4; B) 2; r) -1, -1, -1, 0, 0, 1, 2, 2, 3, 3, 3, 3, 3; д) 3, 5. **12.3.** a) 3, 2, 1, 2;

б)	Результат измерения (коэффициент при x)	-1	0	1	2	3
	Сколько раз встретился	3	2	1	2	5

- в) найденная сумма 13 это количество всех данных измерения;
- г) нет. 12.4. б) Веня; в) их трое: Вася, Витя, Виталик; г) 10, 10, 25.
- **12.5**. a) Tpoe; б) четверо. **12.6**. a) 25; б) 10; в) 15; г) 8. **12.7**. a) 5; б) 5; в) 5; г) 5.

- § 13
- **13.14.** а) 6; б) -12. **13.15.** а) (2; 1); б) (3; 1), (5; 6), (7; 11), (9; 16). **13.19.** а) (2; 2); б) (3; -9); в) (1; 5); г) (4; -1). **13.20.** а) (3; 2); б) (2; -3); в) (0; 0); г) (2; -2). **13.21.** а), в) Нет решений; б), г) бесконечное множество решений. **13.22.** а) (-3; -2); б) (3; -2); в) (-3; -2); г) (-2; 0). **13.23.** а) a = 5; b = 3; б) a = 2, 2; b = -4, 8. **13.24.** а) (2; 1). **13.25.** 12 кг. **13.26.** 70 км/ч и 100 км/ч или 100 км/ч и 60 км/ч. **13.27.** 18. **13.28.** 1 см и 5 см или 2 см и 4 см или 3 см и 3 см. **13.29.** 80 км/ч и 60 км/ч.

§ 14

14.1. а) (-2; -13); б) (-0,1; -8,3); в) (-3; 9); г) (0,2; 6,8). 14.2. а) (3; -20); б) (5; 3); в) (2; 3); г) (1; 2). 14.3. а) (44; 11); б) (2; -8); в) (15; 90); г) (-10; 2). 14.4. а) (20; 2); б) (-15; 37,5); в) (-4,5; 9); г) (8; 12). 14.5. а) (4; 2); б) (5; 6); в) (3; 3); г) (5; -1). 14.6. а) (1; 0); б) (4; 2); в) (9; 7); г) (7; 4,5). 14.7. а) (6; 4); б) (-4; 0); в) (3; -2); г) (-3; -5). 14.8. а) (-3,5; -3); б) (-4; 3); в) (4; 3); г) (5; 3). 14.9. а) (10; 1); б) (0,5; 1); в) (10; 1); г) (0,5; 1). 14.10. а) (6; -7); б) (2; -1); в) (-3; -2); г) (5; 2). 14.11. а), в) Бесконечное множество решений; б), г) нет решений. 14.12. а) $\left(-\frac{1}{6}; -\frac{1}{4}\right)$; б) (-1,5; 1); в) (-0,6; -3,2); г) (2; -1). 14.13. а) (10; -6); б) (9; 4); в) (-6; 4); г) (-5; 3). 14.14. а) (13; 11); б) (4; 3); в) (3; -7); г) (5; 3). 14.15. а) (0; 0); б) (6; 6); в) (1; 0); г) (20; 20). 14.16. а) (11; 140); б) $\left(\frac{1}{3}; 19\right)$; в) (-7; -126); г) $\left(-\frac{6}{7}; -13\right)$. 14.17. а) (20; 100); б) (4,6; -0,2); в) (7,5; -10,5); г) (21; 2). 14.18. а) -0,96; б) $4\frac{4}{29}$; в) $3\frac{3}{13}$; г) $1\frac{6}{41}$. 14.19. а) $y = -\frac{2}{5}x + 2$; б) $y = \frac{2}{3}x + 4$; в) $y = \frac{1}{7}x - 1$; г) y = -2x - 4. 14.21. y = 11,8x. 14.22. 92 ученика. 14.23. 42 и 35. 14.24. 10,5 и 42. 14.25. 26,1 и 30. 14.26. 62 и 50.

§ 15

15.1. a) (6; 1); 6) (6; 3); B) (4; 3); r) (10; 2). **15.2.** a) (2; 1); 6) (2; 1); B) (5; -2); r) (-1; -4). **15.3.** a) (4; 3); 6) (-1; -7); B) (-11; -2); r) (4; -14). **15.4.** a) (60; 30); 6) (10; 8); B) (20; 8); r) (2; -1). **15.5.** a) (2; -1); 6) (-1; 4); B) (3; -1); r) (6; -6). **15.6.** a) (3; 1); 6) (-5; -11); B) (-2; 1); r) (6; -14). **15.7.** a) (-0,25; 0); 6) (0,2; 0); B) (3; 0,5); r) (6; -7). **15.8.** a) (6; 4); 6) (-8; 0); B) (5,5; -2,5); r) (6; 5). **15.9.** a) (-6; 5); 6) (10; 1); B) (5; -8); r) (-6; -12). **15.10.** a) (-3; -2); 6) (35; -46); B) (5; 1); r) (17,4; 19). **15.11.** a) (8; 9); 6) (30; 5); B) (20; 3); r) (-15; 8). **15.12.** a) (4; 3); 6) (-3; 11). **15.13.** a) $y = -\frac{1}{3}x + \frac{11}{3}$; 6) y = -0.4x + 4.6; B) y = 1.2x + 2.6; r) $y = \frac{5}{7}x - \frac{16}{7}$. **15.14.** a) y = 5x - 20; 6) $y = -\frac{2}{5}x - \frac{7}{5}$; B) y = 3.5x + 10.5; r) $y = \frac{3}{7}x + \frac{31}{7}$. **15.16.** a) $p = \frac{5}{3}$; 6) $p = \frac{4}{3}$. **15.17.** a) a = 11, b = -14; 6) a = -4, b = -6; B) a = -10, b = -7; r) a = -4, b = 10. **15.18.** a) a = 13, b = 3; 6) a = -0.8, b = 0.2. **15.19.** a) (2; 3), $(-\frac{10}{33}; \frac{4}{33})$; 6) (6; 4), $(-\frac{7}{3}; \frac{2}{3})$. **15.20.** a) (-5; 4),

 $\left(\frac{25}{12}; -\frac{8}{12}\right)$; 6) (2; -1), $\left(\frac{20}{7}; \frac{3}{7}\right)$. **15.21.** (3; -5), (1; 5).

€ 16

16.1. -9, -6. **16.2.** $\frac{7}{9}$. **16.3.** $\frac{3}{7}$. **16.4.** 340, 200. **16.5.** 200, 160. 16.6. 30, 35. 16.7. 40, 10,2. 16.8. 260 и 110. 16.9. 76 и 24. 16.10. 21. 16.11. 86. 16.12. 74. 16.13. 75. 16.14. 25. 16.15. 12 u 1232. 16.16. 33. 16.17. 1680. 16.18. 38 га, 34 га. 16.19. 4 ц, 5 ц. 16.20. 3 т, 5 т. 16.21. 6 самосвалов, 4 самосвала. 16.22. 3 ящика, 6 ящиков. 16.23. 72 детали, 90 деталей. 16.24. 66 книг, 44 книги. 16.25. 12 мячей. 16.26. 7 монет, 12 монет. 16.27. 720 учебников и 150 учебников. 16.28. 435 деталей. 16.29. 150 p. и 60 p. 16.30. 52 по 5 p. и 84 по 2 p. 16.31. 7 «Икарусов» и 8 «Мерседесов». 16.32. 40 л и 30 л. 16.33. 40 деталей и 30 деталей. 16.34. 18 км/ч и 2 км/ч. 16.35. 5 км/ч, 4 км/ч. 16.36. 3,75 км/ч, 5,25 км/ч. 16.37. 100 км/ч, 60 км/ч. 16.38. 15 км/ч. 16.39. 27 км/ч, 3 км/ч. 16.40. 12 км. 16.41. 24 км/ч, 60 км/ч. 16.42. 4 км/ч, 30 км/ч, 20 ч. 16.43. 12 км/ч, 24 км/ч. 16.44. 2,4 км, 4 км. 16.45. 15 см/с. 10 см/с. 16.46. 10.5 км/ч. 16.47. 40 т. 60 т. 16.48. 40 T, 100 T. 16.49. 50 T, 150 T. 16.50. 40 %, 65 %. 16.51. 5 %, 10 %. 16.52. 50 000 p., 60 000 p.

§ 17

17.1. a) *A*, *A*, *C*, *D*, *D*, *C*, *A*, *D*, *B*, *E*. **17.2.** a) 200; б) 16 %; в) 58 %; г) 19 %. **17.3.** a) 2; б) 106; в) 44,75 %; г) от 1400 до 1900 штук. **17.4.** a) 0,4; б) 0,2; в) 0,6; г) 0,4. **17.5.** a) 20; б) 8; в) 6; г) 2.

Глава 4

§ 18

18.25. a), б), в) 210; г) 420. **18.26.** a) 6200; б) 244. **18.27.** a) $\frac{5}{6}$; б) 2.

18.28. a) $14\frac{1}{3}$; b) $2\frac{9}{16}$. **18.29.** a) $-7\frac{1}{9}$; b) $-5\frac{3}{4}$; b) $-2\frac{7}{20}$; r) $-1\frac{7}{27}$.

18.30. a) 4,5; б) 50,625. **18.31.** a) $-18\frac{3}{8}$; б) 7,68. **18.32.** a) $2^6 \cdot 5^3$; б) $3^4 \cdot 5^4$.

18.33. б) 294 см². **18.34.** а) 8 дм, 512 дм³; б) 5 см, 150 см². **18.35.** 5 рулонов. **18.36.** 3,2 кг. **18.37.** 64 л. **18.39.** а) a < b; б) a > b. **18.40.** 16.

§ 19

19.19. a) -5; б) ± 3 ; в) 2; г) ± 2 . **19.25.** a) 0; б) -1. **19.26.** a) a, c, b, d; б) a, b, c, d. **19.27.** a) 14; б) 6. **19.30.** a) -1; б) -2; в) 2; г) $1\frac{2}{3}$. **19.31.** a) 3,5; б) 8; в) 6; г) -2. **19.32.** a) 7; б) 7; в) 5; г) 2. **19.33.** a) 1; б) 2; в) 2; г) 0. **19.34.** a) -2; б) 1; в) 3; г) -1. **19.35.** a) 1, -3; б) $\frac{2}{3}$, $\frac{8}{3}$; в) 5, -1; г) 1, $-\frac{3}{7}$. **19.36.** a) 3, -3; б) 4, -4.

- **§ 20 20.33.** a) 8; б) 243; в) 625; г) 4. **20.34.** a) 5; б) 9; в) 4; г) 16. **20.36.** a) a; б) zq; в) b; г) m^8 . **20.37.** a) x^{62} ; б) y^{52} ; в) z^{84} ; г) t^{90} . **20.38.** a) z^{23} ; б) p^2 ; в) u^{22} ; г) q^2 . **20.39.** a) x^4 ; б) y; в) c^2 ; г) d^9 . **20.41.** a) 5; б) -3; в) -1; г) 2. **20.42.** a) a^6 ; б) b^3 . **20.43.** a) a < b; б) a < b; в) a > b; г) a < b. **20.44.** a) a < b; б) a > b. **20.46.** 3^{333} .
- § 21 21.23. a) a > b; б) a < b. 21.24. a) 2; б) -1; в) -3; г) 2. 21.25. a) -3; б) 4. 21.26. a) 2; б) 6; в) 9; г) 128. 21.27. a) 26; б) 63; в) 1; г) 12. 21.28. a) $\frac{1}{16}$; б) $\frac{7}{45}$; в) $\frac{1}{10}$; г) 12. 21.29. a) 3; б) $\frac{1}{8}$; в) 3; г) 1,5. 21.30. a) 3; б) 3; в) 1; г) 5. 21.31. a) $2 \cdot 7^{20}$; б) 2^{37} .
- § 22 22.7. а) 1; б) b^8 ; в) 1; г) b^2 . 22.8. а), б), в), г) 1. 22.9. а), б), в) -1; г) $\frac{2}{3}$. 22.10. а) -2; б) 3,9; в) 5; г) -10. 22.12. а) 0; б) 3; в) 0; г) -5. 22.13. а) x = 2; б) $x = \pm 3$; в) y = -2; г) $y = \pm 2,5$. 22.14. а) x = -2; б) $a = \pm 0,2$. 22.15. а) Нет корней; б) -2.
- 23.1. а) 5; б) 67; в) 62; г) 24. 23.2. а) да, 3 раза; б) нет; B) к — показатель степени Сколько раз встретилось к

г) 10. 23.3. a) 5 %; б) 400; в) 4; г) 260. 23.4. б) размах не определён: нельзя из «5» вычесть «н»; в) 4, 160. 23.5. a) 10; б) 6; в) 0; г) 1.

- **24.13.** a) $a^{10}b^8c$; б) $14x^8y^{10}z$. **24.14.** a) 1; б) ± 1 ; в) -1; г) ± 1 . **24.15.** a) 6 см, 8 см; б) 7 дм, 5 дм. **24.16.** 10 см, 5 см, 20 см. **24.17.** 8 м, 4 м, 20 м. **24.18.** 6 дм, 9 дм, 12 дм. **24.19.** 432 см².
- § 25.16. a) 42xy; 6) $41y^2x$; B) 2ab; r) $14ab^2$. 25.17. a) $36a^2b$; 6) $18x^2y^2$; B) $-9az^3$; r) 0. 25.18. a) 10; 6) 10; B) 1,2; r) -0,12. 25.19. a) 20; 6) 1,8; B) 0,4; r) 1,68. 25.20. a) 2; 6) ± 8 ; B) -3; r) решений нет. 25.21. a) 1; 6) 1, -1. 25.26. a) 28xy; 6) $20a^2b$; B) x^2y^2 ; r) 2,45 mn^3r^8 . 25.27. a) $8x^4y^4$; 6) z^nq^n . 25.28. a) $-\frac{13}{24}a^2bc$; 6) $10n^2mk$. 25.29. a) $-\frac{1}{5}m^3n^2l^4$; 6) $\frac{10}{7}x^2y^3z^2$.

25.32. a) $36x^2y^4$; 6) $30a^3b^2$. **25.33.** a) -5, $1n^4p$; 6) $7k^3n^4$. **25.35.** 42. **25.36.** 60. **25.37.** 13,5 и 9. **25.38.** 550 р. **25.39.** 3 см, 4 см, 6 см. **25.40.** 6 см, 2 см, 8 см. **25.41.** 200. **25.42.** 1250. **25.43.** 12 см, 4 см, 24 см. **25.44.** 10 м, 8 м, 16 м. **25.45.** 2 дм, 3 дм, 5 дм.

§ 26

26.15. a) 500
$$a^5$$
; b) $-6.4x^{17}$; b) $12c^{12}$; r) $32a^6c^7$. **26.16.** a) $-x^{25}y^{14}$;

6)
$$24x^{14}y^9$$
; B) $-54a^7$; r) $2x^{26}y^7$. **26.17.** a) $0.04b^{19}$; 6) $\frac{9}{16}p^7$; B) $-112a^{11}b^5$;

r)
$$3000a^{11}$$
. **26.18.** a) $a^4b^4c^6$; 5) $-x^6y^7z^4$; B) $61,25x^4z^5$; r) $2c^4d^7$. **26.24.** a) $2700a^7y^8$;

6)
$$-2x^3y^{19}$$
; B) $-27x^{26}y^{10}$; r) $\frac{81}{16}a^{28}b^{28}$. **26.25.** a) $4a^6b^{15}$; 6) $-27pq^5$;

B)
$$-0.24a^5b^5c^6$$
; r) $-0.5m^{16}n^4$. **26.26.** a) $-40.5a^7b^5y^3$; б) $b^5c^{10}d^4$; B) $-1.6p^7x^7z^6$;

r)
$$-3000a^{13}$$
, **26.27.** a) $-\frac{4}{3}a^{12}x^{10}$; 6) $-3m^{19}n^{26}$; B) $\frac{1}{9}a^{14}c^{14}$; r) $\frac{9}{4}a^{14}b^{8}$.

26.28. a)
$$\frac{9}{4}x^{11}y^{17}$$
; 6) $\frac{7}{3}x^7y^{15}$. **26.29.** a) $-\frac{1}{3}$; 6) -4 . **26.31.** a) $-5m^2n^3$; 6) $\frac{16}{3}a^3b^3$.

26.36. a)
$$\left(\frac{5}{3}x^2yz^4\right)^2$$
; b) $(0,3m^3n^2)^3$; b) $\left(\frac{7}{4}a^3d^2c^4\right)^2$; r) $(0,2u^5v)^3$. **26.37.** a) 1;

б)
$$\pm 0,6$$
; в) $\frac{2}{3}$; г) ± 2 . **26.39.** а) 1; б) ± 1 ; в) -1 ; г) ± 1 .

§ 27

27.10. a)
$$5a^4b^4$$
; b) $2500x^4y^6$; b) $49z^{16}t^{14}$; r) $x^7y^{11}z^3$. **27.11.** a) m^6n^6 ; b) $55n^3a^4$; b) $-x^4y^9z^{14}$; r) $-5a^3c^7d$ **27.15.** a) cy^4 ; b) $3ab$; b) r^9c^5 ; r) $2a^3b^3$

6)
$$55p^3q^4$$
; B) $-x^4y^9z^{14}$; r) $-5a^3c^7d$. **27.15.** a) cy^4 ; 6) $3ab$; B) x^9c^5 ; r) $2a^3b^3$.

27.16. a)
$$-1600x^{10}y^{17}$$
; 6) $1296a^{18}x^{30}$. **27.17.** a) $\frac{27}{256}ax^5$; 6) $-\frac{9}{32}a^2b^3$.

27.18. a)
$$\frac{1}{96}b^2$$
; б) $1600x^{22}$. **27.19.** a) $19.2x^{15}z^5$; б) $\frac{13}{200}a^6b^3$. **27.20.** a) 2; б) -2 .

§ 28

28.1. a)
$$\frac{7}{22}$$
; 6) $\frac{3}{38}$; B) $\frac{5}{37}$; r) $\frac{1}{4}$. **28.2.** a) $\frac{5}{59}$; 6) $\frac{1}{59}$; B) $\frac{6}{59}$; r) $\frac{3}{118}$.

a	-1	-1	-1	0	0	0	1	1	1	2	2	2
b	0	1	2	0	1	2	0	1	2	0	1	2
$2a^2b^3$	0	2	16	0	0	0	0	2	16	0	8	64

б)	Значение $2a^{2}b^{3}$	0	2	8	16	64	Bcero: 5
	Сколько раз встретилось	6	2	1	2	1	Сумма: 12

в)	Значение $2a^{2}b^{3}$	0	2	8	16	64	Bcero: 5
	Частота значения	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{12}$	Сумма: 1

28.5. а) 125; б) 27; в) 0, так как из трёх натуральных чисел два имеют одинаковую чётность; г) 8.

§ 29 29.13. a)
$$1.9c^5 + \frac{3}{8}c^2$$
; 6) $-\frac{3}{8}m^3 - \frac{2}{9}m^2 + m$; B) $-a^2b - 15ab^2$; r) $y^3 - 11xy^2 + 15x^2y$. 29.16. a) 8; 6) $-\frac{7}{8}$; B) $\frac{7}{48}$; r) 31.5. 29.17. 6) 0; 0; 21; -3.

29.18. 6) 0; 6; 0;
$$\frac{21}{16}$$
. **29.19.** a) $\frac{1}{15}$; 6) 0,1; B) -1,4; r) 6. **29.20.** a) $15x + 23$; 6) $-24x^2 + 32x - 2$. **29.21.** a) $3,3m^3 + 7m^2 - 15m - 27$; 6) $18k^4 - 13,9k^3$; B) $4,1a^4 - 9,9a^3 - 6,5a^2$; r) $-4,9b^3 + 5,5b^2$. **29.22.** 6) 1; 4; 0; 9. **29.23.** 6) 8; 0; -1; -27. **29.24.** a) 1; 6) 0; B) 0,5; r) ± 2 . **29.27.** a) $12x^2 - x + 9$; 6) $-6a^2 + 31a + 17$. **29.28.** a) $10a^2 - 16a - 8$; 6) $9x^3 + 2x - 6$. **29.29.** a) $6a + 30$; 6) $8a + 4$; B) 6; r) $2a - 24$. **29.30.** a) $13,5x^2 - 6,5x + 31$; 6) $17,5x^2 + 7,5x + 28,6$; B) $-17,5x^2 - 7,5x - 28,6$; F) $11,5x^2 - 0,5x + 12,6$. **29.32.** a) $8b^3$; 6) $24a^3 - 18a^2b + 8ab^2 - 22b^3$; B) $-24a^3 + 18a^2b - 8ab^2 + 22b^3$; r) $-10a^3 - 8a^2b - 16ab^2 + 56b^3$. **29.33.** $\frac{5}{48}$. **29.34.** a) $2x + 9$; 6) $8x - 31$. **29.35.** $p(x) = 5x - 2$.

- § 30.6. a) $2a^5 + 7a^4 + 7a^3 + 2a^2 + a + 1$; б) $2a^5 a^4 5a^3 + 6a^2 3a + 1$; B) $-2a^5 + a^4 + 9a^3 + a + 1$; г) $-2a^5 7a^4 3a^3 + 4a^2 3a + 1$.

 30.8. a) $3a^3 3,8a^2 2a + 1,2$; б) $-12a^3 + 5,4a^2 + a + 3,6$. 30.10. a) $-0,5a^2 1$; б) $-2,5a^2 + 0,7ax + x^2$; B) 0; г) $-3,2y^3 + 6z^2 + 10az$. 30.11. a) 0; б) -14; B) $-1\frac{5}{8}$; г) 0. 30.12. a) 8,4; б) -3,6; B) -67,2; г) 0,6. 30.13. a) 3; б) -1; B) 1,5; г) 2. 30.14. a) x 1; б) 3x 3; B) 2x 0,5; г) 4x 3. 30.15. 14.
- **§ 31 31.5.** a) 0.1; b) 17; b) -27; r) 54. **31.6.** a) $-15a^3 + 22a^2 + 4a$; 6) $220k^4 150k^2$; b) $6b^5 2b^4 4b^3 + 8b^2$; r) $140a^4 600a^3 + 30a^2 + 100a$. **31.7.** a) $-2a^4 + 6a^3 2a^2$; 6) $2x^2 + 2y^2 4xy y$; b) $2c^4 + 13c^3 2c^2 3c$; r) $12p^4 + 60p^3 12p^2$. **31.8.** a) $13x^2 + 45x 145$; 6) $72x^3 + 157x^2 605x 13$; b) $231x^3 + 289x^2 629x 44$; r) $-1,2x^5 + 4,5x^4 4,3x^3 + 0,7x^2 13,5x 17$. **31.9.** a) $48a^4 53a^3 6a^2 + 8$; 6) $36a^4 96a^2 + 156a$; b) $15a^5 + 160a^3 152a^2 4a$; r) $60a^5 12a^4 + 104a^3 12a^2 + 16a 14$. **31.10.** a) $\frac{1}{3}$; 6) $-\frac{10}{3}$; b) $-\frac{4}{21}$;

- г) $\frac{9}{14}$. 31.11. a) -2; б) 3; в) -1; г) 1. 31.12. a) 2; б) 3; в) -0,2; г) 0. 31.13. a) 2; б) 3; в) 1; г) -1. 31.14. a) 6; б) 0; в) $\frac{1}{3}$; г) нет корней. 31.16. a) x = 5, y = 0 любое число; б) a = 3, b = 0 любое число. 31.17. 450. 31.18. 42 км. 31.19. 12 км/ч. 31.20. 30 км. 31.21. 13 км/ч. 31.22. 12 км, 5 км. 31.23. 41 км, 36 км, 33 км. 31.24. 800 км/ч. 1200 км/ч. 31.25. 15 км/ч. 31.26. 9 га, 11,5 га. 31.27. 12 деталей. 31.28. 1280 человек, 2560 человек, 2160 человек. 31.29. 400 человек. 31.30. 5 см, 13 см. 31.31. 4 см, 4 см, 10 см. 31.32. 22 км. 31.33. 13 км.
- **§ 32.8.** a) $a^3 + a^2 5a 6$; 6) $m^2 n^2 + m + n$; B) $5b^3 26b^2 + 10b 1$; $c^2 4d^2 c + 2d$. **32.9.** a) $x^3 + y^3$; 6) $a^3 + 2a^2x + 2ax^2 + x^3$; B) $n^3 p^3$; $c^3 2c^2d + 2cd^3 d^3$. **32.10.** a) $8a^3 + 27b^3$; 6) $4a^4 11a^3 + 25a^2 13a 5$; B) $125x^3 8y^3$; $c^3 2a^3 + 2a^3$
- г) $2m^2 4m^2 + m 2$. **33.55**. a) $a^{16} b^{16}$; б) 1. **33.56**. a) $6a^2b$; б) $48x^3$. **33.62**. a) -1,5; б) 7; в) 0; г) -0,5. **33.63**. a) 1,7; б) $\frac{1}{24}$; в) 3; г) 3. **33.64**. a) $\frac{5}{12}$; б) 1; в) -0,1; г) 4,5. **33.65**. a) $1\frac{7}{12}$; б) 3; в) $-2\frac{11}{30}$; г) 2. **33.66**. a) 1; б) -1; в) 2; г) -2. **33.67**. 7 см, 2 см, 12 см. **33.68**. 6 см, 3 см, 9 см. **33.69**. 72 см. **33.72**. a) -1; б) -1. **33.74**. a) 1; б) 49. **33.75**. a) 80 и -80; б) 80. **33.76**. a) -3 при x = 5, y = -5; б) 4 при x = 2, y = 8. **33.77**. a) 15 при x = 7, y = -3; б) 27 при x = 3, y = 9. **33.78**. a) (4; 1); б) (-1; 3). **33.79**. a) 6 при x = 2, y = 3; б) 3 при x = 3, y = 7. **33.80**. (25; 5).

33.45. a) -8; б) 18,6; в) 87; г) 21. **33.46.** a) 132; б) 0; в) 324; г) 49. **33.47.** a) -64; б) 16; в) -116; г) -8. **33.54.** a) 64; б) $c^3 - 4pc^2$; в) 36;

§ 34. a) -20; б) -1,5; в) 1,75; г) $-\frac{1}{12}$. 34.3. a) 16; б) $3\frac{1}{8}$; в) 12,25; г) $2\frac{1}{8}$. 34.4. a) -9; б) 25. 34.5. 98 при x = 5,4, y = 0,8. 34.6. 100 при x = 1, y = -1. 34.7. 1 при x = 1, y = -1. 34.8. 9 при x = -2, y = -2. 34.9. a) x = -2, y = 0,5; б) $a = \frac{2}{3}$, $b = -\frac{3}{2}$.

§ 35

35.6. а) 24; б) -1. 35.8. а), б) Нет; в), г) да.

§ 36

36.1. a) 17, 10; б) -1, 6; в) $\frac{6}{17}$; г) 0,353, 35,3 %. **36.2.** a) $\frac{2}{17}$, 0,118, 11,8 %;

5) *-3*-11.8%, *-1*-35.3%, *2*-23.5%, *4*-17.6%.

в)	Результат	-3	-1	2	4	7
	Частота, %	11,8	35,3	23,5	17,6	11,8

r) -3, 4, 7.

36.3. a) 7; б) 40,5 %; в) 21,6 %; г) 3024. 36.4. a) 2226; б) 5250; в) 1372;

г)	Игрок	Аню- ков	Арша- вин	Жир- ков	Зыря- нов	Коло- дин	Павлю- ченко	Семак	Сем-
	Число «за»	266	2226	1512	343	588	1512	462	91

36.5. a) 5, 7, 7, 8, 5, 5, 3;

б)	Степень одночлена	3	5	7	8	Всего: 4 значения
	Сколько раз она встретилась	1	3	2	1	Сумма: 7

B)	Степень одночлена	3	5	7	8	Всего: 4 значения
	Частота, %	14,3	42,9	28,6	14,3	Сумма: 100,1 = 100

36.6. a) 6, 4, 1, 6, 6, -1, 6;

б)	Коэффициент	-1	1	4	6	Всего: 4 значения
	Сколько раз он встретился	1	1	1	4	Сумма: 7

в)	Коэффициент	-1	1	4	6	Всего: 4 значения
	Частота, %	14,3	14,3	14,3	57,1	Сумма: 100

36.7. a) 1; 6) 0; B) 0,5; r)
$$\frac{1}{3}$$
. **36.8.** a) 1; 6) 0; B) 0,5; r) $\frac{1}{3}$.

36.9. a) 3, 2, 2, 4, 2, 3, 4, 2, 4, 3, 4, 2;

б)	Число сомножителей	2	3	4
	Сколько раз встретилось	5	3	4

Глава 7

§ 37

37.5. a) 0; 2; 6) 0; $-\frac{1}{6}$; B) 0; -3; r) 0; $\frac{1}{4}$. **37.6.** a) 0; 1; 6) 0; -2; B) 0; $\frac{7}{3}$; r) 0; 4. **37.12.** a) 1; -2; 6) ± 1 ; 3; B) 3; 4; r) -1; ± 2 . **37.13.** a) 0; 2; 6) -6; 2; B) 0; -4; r) 5; -1. **37.14.** a) ± 6 ; 6) ± 10 ; B) ± 0.6 ; r) ± 10 . **37.15.** a) 0.25; 6) 6.6; B) 72; r) 45. **37.16.** a) 5,2; 6) 0,5.

838

38.17. a) -a(a + b)(a + 4b); б) $m^2(m - n)(3 + n)$; в) 5x(3x - 8)(7x - 16); г) $-90d^2(2d - 5)$. **38.18.** a) $30\,800$; б) 0,04; в) $16\,700$; г) -1,62. **38.19.** a) $0,07\,56$; б) 1,2; в) 3,26; г) 1. **38.20.** a) 25; б) $-\frac{5}{3}$; в) 0,5; г) $\frac{1}{6}$. **38.22.** a) -40; 0; б) 0; $\frac{3}{4}$; в) -0,03; 0; г) 0; $\frac{2}{7}$. **38.23.** a) -2; 0; б) 2; 6; в) 0; 3; г) -4; 2. **38.24.** a) -2; 5; 1,5; б) -0,5; 0,5; 1,5. **38.29.** a) 0; 2; б) -1; 0; в) 0; -2; г) 0; 5.

§ 39

39.3. a) $(5 + y)(y^2 + 1)$; b) $(y - 2)(y^2 + 2)$; b) $(z + 7)(z^2 + 3)$; r) $(z-3)(z^2+1)$. 39.4. a) $(1+c^2)(7-c)$; b) $(x^2-2)(x-14)$; b) $(x-3)(x^2+2)$; r) $(b-2)(2b^2+3)$. 39.5. a) $(b^2+2c^2)(16a+5c)$; 6) (2n+5)(10n-7a); B) (2a + 3b)(9a + 7c); r) (xz + 5y)(2xy - 3z). 39.6. a) $(5a^2b - 7c)(8ac - 3b)$; 6) $(y^2 + 2z^2)(16x - 5z)$; B) (5x - 2)(6x - 5c); P) 2(x - 2k)(9xz - 5yk). **39.7.** a) $(x^n + 3)(x - 5)$; 6) $(x^{n+1} - y^3)(y^n + 2)$; B) $(a^{n-1} + 1)(x^2 - 4)$; r) $(x^n - 1)(x^n - 1)(x^n - 1)$ $-y)(y^a-x)$. 39.8. a) -2,25; б) 0; в) -9; г) 0. 39.9. a) $-8\frac{2}{3}$; б) 0; в) 0; г) -18. **39.10.** a) 0; б) $\frac{7}{26}$. **39.11.** a) 60; б) 12500; в) 32; г) 28. **39.12.** a) 360; 5) 100; B) 360; P) 200. 39.13. a) $(x^2 - y)(a - b - c)$; 6) $(y^2 - a)(x - b + 1)$; B) (x + y)(a + b + c); r) $(ab - c)(a^2b^2 - ab + 1)$. 39.14. a) (x + 2)(x + 4); 6) (x-3)(x-5); B) (x+1)(x+2); r) (x-2)(x-3). 39.15. a) (a-1)(a-6); 5) (b-1)(b+10); B) (y-6)(y-4); C) (z+2)(z-20). 39.16. a) (a+9b)(a-b); 6) (a + 11b)(a + 5b); B) (x - 2y)(x + 6y); F) (x + 3y)(x + 13y). 39.17. a) 1; 2; 6) -5; -3; -**39.19.** a) -2; b) -1; 2; b) -3; r) 1; 3. **39.20.** a) p = 2; p = 4; b) p = -2; p = 4. **39.21.** a) p = 3; p = -1; b) p = 1; p = -5. **39.22.** a) 1; 2; b) 0; 3. **39.24.** a) (0; 7), (2; 3), (-1; -3), (-3; 1); 6) (1; 2).

§ 40

40.20. a) (x-4)(x+6); б) y(y-4); в) (z+4)(z+16); г) (t-17)(t+3). **40.21.** a) (10-m)(4+m); б) (11-a)(29+a); в) (13-n)(37+n); г) (24-b)(b-2). **40.22.** a) (2-y)(2+3y); б) 3(5a-9)(5a+3);

B)
$$(-2t-7)(4t-7)$$
; r) $3(4b+3)(6b-1)$. 40.23 . a) $(a-b+2)(a+b+6)$; $(5)(x-y-13)(x+y+3)$; B) $(m-n+22)(m+n-2)$; r) $(c-d+22)(c+d-24)$. 40.24 . a) $-(x+2)(7x+4)$; 6) $-3(3y+11)(5y-1)$; B) $12(2z+1)(9z+1)$; r) $(5t-2)(21t-16)$. 40.29 . a) $(2c-3)(4c^2+12c+21)$; 6) $4(p-1)(7p^2-20p+16)$; B) $(k-1)(k^2-8k+19)$; r) $4(a+1)(31a^2+44a+16)$. 40.30 . a) $(b+8)(91b^2+136b+64)$; 6) $(8p+3q)(124p^2-42pq+9q^2)$; B) $9(1-x)(13x^2-12x+3)$; r) $(3x+11y)(9x^2-15xy+67y^2)$. 40.31 . a) $(\frac{3}{4}a-\frac{4}{3}b)^2$; 6) $(\frac{3}{5}a^3b+\frac{5}{6}ab^3)^2$; B) $(b^4+\frac{1}{2}a^2)^2$; r) $(0,1x^2-y)^2$. 40.33 . a) $(2x+3y)^3$; 6) $(3a^3-\frac{1}{3})^3$; B) $(5x-4y)^3$; r) $(\frac{1}{2}c^2-4b)^3$. 40.34 . a) 12 ; 6) $-1,2$; B) -16 ; r) $2\frac{1}{3}$. 40.35 . a) $\pm\frac{4}{5}$; 6) $\pm\frac{14}{11}$; B) $\pm\frac{6}{5}$; r) $\pm\frac{20}{9}$. 40.36 . a) -0.5 ; 5,5; 6) $\frac{3}{8}$; $\frac{3}{2}$; B) $\frac{5}{11}$; $\frac{3}{11}$; r) -3 ; $\frac{1}{3}$. 40.37 . a) $-\frac{4}{3}$, -2 ; 6) $-\frac{9}{2}$, $\frac{1}{3}$; B) $\frac{3}{2}$, $\frac{1}{4}$; r) $\frac{19}{8}$, 6. 40.38 . a) 0.5 , 6) 0, -3 ; B) $-\frac{2}{3}$; r) 1, -1 . 40.39 . a) 23; 6) 10 000; B) $\frac{3}{8}$; r) 225. 40.40 . a) 1; 6) 1; B) 1; r) 5. 40.41 . a) $\frac{4}{117}$; 6) $\frac{5}{19}$; B) 10; r) 94,5. 40.42 . a) 80; 6) 12; B) 14; r) 130. 40.43 . a) $\frac{5}{11}$; 6) $\frac{3}{2}$; B) 25; r) $\frac{3}{20}$. 40.44 . a) 1; 6) 8. 40.45 . a) 1; 6) 0,5; B) 1; r) 2. 40.50 . a) $(-\frac{1}{2}; -\frac{7}{4})$, $(\frac{2}{13}; -\frac{3}{26})$; 6) $(5; 2)$, $(\frac{3}{37}; -\frac{4}{37})$.

§ 41

41.10. a) $(m+1)(m^2+8m+19)$; b) $(c+2)(c^2-5c+13)$; b) $(a-17)(a^2-5c+13)$; c) -19a + 109; r) $(b + 8)(b^2 + 4b + 16)$. 41.11. a) $(x - 1)^2(x + 1)^2$; 6) $(y+1)^2(y^2+2y-1)$; B) $(c+3)^2(9-c^2-6c)$; F) (3m+n)(5m-n), **41.12.** a) (a + b + c)(a + b - c); 6) (1 - m - n)(1 + m + n); B) (4 - x + n)+y(4+x-y); r) (2-p-q)(2+p+q). 41.13. a) (x-c-d)(x-c+d); 6) (a+1-b)(a+1+b); B) (c+3-d)(c+3+d); F) (r-s-5)(r+s+5). **41.15.** a) $(x-y)^2(x+y)$; b) (c+d)(c-d+2); b) $(a+b)^2(a-b)$; r) (m+2n)(m-2n-1). 41.16. a) $(x-3)(x-1)^2$; 6) $(1-a)^2(1-2a)^2$. **41.17.** a) $(a^2 - 2ab + 4b^2)(a + 2b + 1)$; b) $(4c^2 + 2cd + d^2)(2c - d + 1)$. **41.18.** a) $(x + 2y)(x^2 - 2xy + 4y^2 + x + 2y)$; b) $(2p - q)(4p^2 + 2pq + 2yq +$ $+q^2+2p-q$). 41.19. a) $(a+2)(a^2-3a+4)$; 6) $(b+1)(b^2-7b+1)$. **41.20.** a) (a-2b+3)(a+2b+3); b) (2x-5y+3)(2x+5y+3). **41.21.** a) 7ab(3a-2b+1)(3a+2b-1); 6) $12x^3(5x-2y+1)(5x+2y+1)$. **41.22.** a) $(a + 2)(a^2 - 5a + 13)$; b) $(x - a + 1)(x^2 + ax - x + a^2 - 2a + 1)$; B) $(a + 1)(a^2 + 5a + 7)$; r) $(2x + a + 2)(4x^2 - 2ax - 4x + a^2 + 4a + 4)$. **41.23.** a) $(x^2 + 5x + 11)(x^2 + 5x - 1)$; 6) $(x^2 + 4x - 3)(x^2 + 4x + 7)$. **41.24.** $(a^2 + ab + b^2)(a^2 - ab + b^2)(a^2 - b^2 + 1)$. **41.25.** $(x - 1)(x^2 - x - 1)(x^2 + ab + b^2)(a^2 - ab + b^2)(a^2 - b^2 + 1)$. +2x+4). 41.26. a) 0; ± 1 ; 6) 0; ± 4 ; B) 0; -1; r) 0. 41.27. a) -1; ± 2 ; 6) ± 2 ;

B) -1; ± 3 ; r) 1; ± 2 . **41.28**. a) ± 1 , ± 0.5 ; б) ± 1 , ± 2 ; B) ± 3 , ± 1.5 ; r) ± 1 , ± 0.5 . 41.29. a) ±1; 6) ±2. 41.32. a) 14; 6) 47; B) 45; r) 301. 41.33. a) 943; 6) 37; B) 45; r) 279. 41.36. a) (4; 2), (-36; 18); б) (2; 6), (-22; 66).

41.37. a) (5; 1), (-30; 15); 6) (12; 4), (8; 1). **41.38.** a) $\left(-\frac{1}{7}; -\frac{1}{21}\right)$,

(1; -1); 6) $(\frac{15}{11}; \frac{15}{22}), (1; 1), 41.39, a) <math>(6; -2), (3; 3); 6)$ $(\frac{7}{2}; 3), (4; -2).$

41.40. a) (7; -2); б) (-16; -7).

§ 42

42.13. a)
$$\frac{1}{y}$$
; б) $-q$; в) $-a$; г) $\frac{2d}{3}$. **42.15.** a) $\frac{x-3}{3}$; б) $-\frac{y+12}{y}$; в) $\frac{2-d}{3}$;

r)
$$-\frac{c}{c+5}$$
. **42.16.** a) $\frac{ab-1}{3a}$; б) $-\frac{3a(a+2)}{4b}$; в) $\frac{a}{3(b-ac)}$; г) $-\frac{3a^2}{4b(b+c)}$.

42.21. a)
$$\frac{a^6c^6}{3b^4}$$
; б) $\frac{11y^5}{12xz^{11}}$; в) $\frac{10m^{11}r^3}{3n^{101}}$; г) $\frac{15p^{10}}{q^{11}t}$. **42.22.** a) $\frac{x-2}{3}$; б) $-\frac{a+1}{a}$;

B)
$$\frac{4}{1-x}$$
; r) $\frac{3q}{q+8}$. **42.23.** a) $\frac{y+x}{y-x}$; 6) $\frac{4c+1}{4c-1}$; B) $\frac{b+7}{b-7}$; r) $\frac{2n-m}{2n+m}$.

42.24. a)
$$\frac{x-y}{2(x+y)}$$
; 6) $\frac{m+3n}{4m}$; B) $\frac{2(2c-d)}{2c+d}$; r) $\frac{1-2n}{2n}$. **42.25.** a) $(a-b)^2$;

6)
$$\frac{7y^2}{(x+y)^2}$$
; B) $\frac{1}{(p+q)^2}$; r) $\frac{(m-n)^2}{6mn}$. **42.26.** a) $\frac{1+c}{1+c+c^2}$; 6) $\frac{4t^2-10t+25}{2t-5}$;

B)
$$\frac{b+2}{b^2+2b+4}$$
; r) $-\frac{4z+3}{16z^2+12z+9}$, **42.27.** a) $-\frac{3(p+3)}{p^2+3p+9}$; 6) x^3-y^3 ;

B)
$$\frac{2(2n-1)}{n(4n^2-2n+1)}$$
; r) $\frac{y^3}{y^2-1}$. **42.28.** a) 36; б) 93; в) 8; г) 0. **42.29.** a) 0,01;

6)
$$\frac{5}{3}$$
; B) -11 ; r) -9 . **42.30.** a) -1 ; 6) 2; B) $\frac{15}{8}$; r) $-\frac{15}{8}$. **42.31.** a) 18;

6) 3; B)
$$-0.6$$
; P) 1. **42.32**. A) 2; 6) $\frac{7}{11}$; B) $\frac{9}{8}$; P) -4 . **42.33**. A) $-\frac{2a(4b+c)}{bc}$;

6)
$$\frac{y^x}{x^a(x-y)}$$
; B) $-\frac{ab^2}{2c(3c+2b)}$; P) $\frac{x^2}{y^2(3y-2x)}$. **42.34.** a) $\frac{a(5b-4a)}{2b}$;

6)
$$\frac{3b}{4a(2b^2+a^2)}$$
; B) $\frac{2a}{b(3a-5b)}$; r) $\frac{2b^3(b^2+3a^2)}{3a}$. 42.35. a) $\frac{bc(2ac-b)}{13a}$;

б)
$$\frac{4xz^3}{y(x^2+5y^3)}$$
; в) $\frac{4}{xz(3x-y^2)}$; г) $\frac{2b(c^4+2d^4)}{ac^2}$. **42.36.** а) $\frac{3x^2(x+2y)}{2y^2(x-2y)}$;

$$5) \frac{2a(2a^2-3c)}{bc^2(2a^2+3c)}; \text{ B) } \frac{3b^2(3a+2b)}{5a^2(3a-2b)}; \text{ P) } \frac{3x^2y(5x+2y^2)}{5z(5x-2y^2)}. \text{ 42.37. a) } -\frac{a+c}{b+a-c};$$

6)
$$\frac{x-1}{2y+3}$$
; B) $x-y$; r) $\frac{3y-2}{x-1}$. **42.38.** a) $\frac{x-y}{3-2x}$; 6) $\frac{x+y+z}{x+y-z}$;

B)
$$\frac{a-c}{a-x}$$
; r) $\frac{3z+n}{5z-n}$. **42.39.** a) $\frac{x^n-y^n}{3(x^n+y^n)}$; 6) $\frac{b^2(a^n+2)}{a(a^n-2)}$; B) $\frac{a(a^n-1)}{2(a^n+1)}$;

r)
$$\frac{2y(2x^n-3y^n)}{xz(2x^n+3y^n)}$$
. **42.40.** a) $\frac{a^{33}+8}{a^{34}}$; 6) $\frac{1}{a(a^n+b^{2n})}$. **42.41.** a) x^2+x+1 ;

6)
$$a^2 - 6a + 18$$
, 42.42. a) $\frac{2x + 3y}{(2x - 3y)^2}$; 6) $\frac{(3a + b)^2}{3a - b}$.

44.1. a) 5; 6) 10; b) 15; r) 55. **44.2.** a) -0,6; 6) -1; b) -1,4; r) 0,6. **44.3.** a) 4,5; 6) 4; b) 5; r) 4,25. **44.4.** a) -5; 6) -30; b) 45; r) 10 070. **44.5.** a) 2; 6) 3; b) 3; r) 7. **44.6.** a) 3; 6) 6; b) 30; r) 299. **44.7.** a) 0,02, да; 6) 0,14, нет.

- **45.34.** а) (0; 0) и (2; 4); б) (0; 0) и (3; -9); в) (0; 0) и (-1; 1); г) (0; 0) и (-1; -1). **45.35.** а) (2; 4) и (-1; 1); б) (3; -9) и (-2; -4); в) (-3; 9) и (2; 4); г) (-2; -4) и (1; -1). **45.36.** а) (-3; 9) и (1; 1); б) нет точек пересечения; в) (-3; -9) и (1; -1); г) нет точек пересечения. **45.43.** а) (-1; 1); б) (-1; -1); в) (2; 4); г) (2; -4). **45.44.** а) -1 < x < 1; б) x < -1; x > 1; в) -3 < x < 3; г) x < -3; x > 3. **45.45.** а) x < -2; x > 2; б) -3 < x < 3; в) -2 < x < 2; г) x < -3; x > 3. **45.46.** а) -2 < x < -1; 1 < x < 2; б) -3 < x < -2; 2 < x < 3.
- **5 46.1.** а) (2; 5); б) (-3; 9) и (3; 9); в) (1; -1); г) (0; 0) и (2; -4). **46.2.** а) 2; б) 0; в) 0; г) 2. **46.3.** а) 0; б) 2; в) 2; г) 2. **46.4.** а) ±1; б) ±2; в) 0; г) корней нет. **46.5.** а) 0; 2; б) -3; 0; в) -2; 0; г) 0; -3. **46.6.** а) 3; -2; б) -2; 1; в) -1; 2; г) -3; 2. **46.7.** а) -1; 3; б) 1; 2; в) -3; 1; г) -3; 1. **46.8.** а) 1, -3; б) 1, 3; в) -1, -3; г) 3, -2. **46.9.** а), б), в), г) Нет корней. **46.10.** а) 1; б) -2; в) -1; г) 2. **46.11.** а) (2; 2); б) (0; 0), (1; 1). **46.12.** а) (-4; -12); б) (-1; 1). **46.13.** а) (-3; -9) и (2; -4); б) (-2; -4) и (1; -1). **46.14.** а) (2; 4), (-2; 4); б) (-1; 1), (3; 9); в) (3; 9), (-3; 9), г) (1; 1), (-3; 9). **46.15.** а) Нет решений; б) (1; -1); (-2; -4); в) (0; 0), (-1; -1); г) (1; -1), (-3; -9).

г) b>4. 47.55. a) b>0; $-4\le b\le -1$; б) $-1< b\le 0$; в) таких значений b нет; г) b<-4. 47.56. a) b>1; b=0; б) $0< b\le 1$; в) b=-2; г) -2< b<0; b<-2. 47.57. a) -8; ± 1 ; б) ± 2 ; в) 3; г) -10; 0. 47.58. a) $\frac{8}{3}$; б) -2; в) 3; г) 0; $\frac{7}{3}$. 47.59. a) 8; б), в), г) 1. 47.60. a) 2; б) 1; в) 0; г) 5.

§ 48

48.1. а) 3. **48.2.** а) 15; б) 5. **48.3.** г) Например, от 0 до 99, от 99 до 399, от 399 до 1000. **48.4.** а) 25. **48.6.** а) 36; б) 1, 5, 9, 13, ..., 29, 33; 4n + 1; в) 3; г) 4.

48.7. a)	Расход, кВт/час		От 100 до 200	A 100 CO	and the second second	PERSON BUTCHES
	Число квартир	3	13	11	5	4

б)	Расход, кВт/час	От 0 до 100	От 100 до 200	От 200 до 300	От 300 до 400	От 400 до 500
	Частота, %	8,3	36,1	30,6	13,9	11,1

B)	Расход, кВт/час	От 0 до 150	От 150 до 300	От 300 до 450
	Число квартир	10	17	9

r)	Расход, кВт/час	От 0 до 150	От 150 до 300	От 300 до 450
	Частота, %	27,8	47,2	25

48.8. а) 4; в) 3; г) 2.

ОГЛАВЛЕНИЕ

	Предисловие	3
ГЛАВА 1.	МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ	>
	\$ 1. Числовые и алгебраические выражения \$ 2. Что такое математический язык \$ 3. Что такое математическая модель \$ 4. Линейное уравнение с одной переменной \$ 5. Задачи на составление линейных уравнений \$ с одной переменной \$ 6. Координатная прямая \$ 7. Статистика и комбинаторика. Данные и ряды данных	4 12 15 23 26 32 38
ГЛАВА 2 .	ЛИНЕЙНАЯ ФУНКЦИЯ	
	§ 8. Координатная плоскость	40
	и его график	47
	§ 10. Линейная функция и её график § 11. Взаимное расположение графиков	52
	линейных функций	64 68
глава з .	СИСТЕМЫ ДВУХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ	
	§ 13. Основные понятия	70
	§ 14. Метод подстановки	74
	§ 15. Метод алгебраического сложения § 16. Системы двух линейных уравнений с двумя переменными как математические модели	78
	реальных ситуаций	83
	§ 17. Нечисловые ряды данных	90
глава4.	СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ И ЕЁ СВОЙСТВА	
	§ 18. Что такое степень с натуральным показателем § 19. Таблица основных степеней	93 98

	§ 20. Свойства степени с натуральным показателем § 21. Умножение и деление степеней	101
	с одинаковыми показателями	106
	§ 22. Степень с нулевым показателем	
	§ 23. Работа с таблицами распределения	
ГЛАВА 5	ОДНОЧЛЕНЫ. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД ОДНОЧЛЕНАМИ	
	§ 24. Понятие одночлена. Стандартный вид одночлена § 25. Сложение и вычитание одночленов	
	Возведение одночлена в натуральную степень	120
	§ 27. Деление одночлена на одночлен	
	§ 28. Таблицы распределения частот	
ГЛАВА 6	МНОГОЧЛЕНЫ. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НАД МНОГОЧЛЕНАМИ	
	§ 29. Основные понятия	128
	§ 30. Сложение и вычитание многочленов	
	§ 31. Умножение многочлена на одночлен	
	§ 32. Умножение многочлена на многочлен	
	§ 33. Формулы сокращённого умножения	
	§ 34. Метод выделения полного квадрата	
	§ 35. Деление многочлена на одночлен	154
	§ 36. Процентные частоты	157
глава 7	РАЗЛОЖЕНИЕ МНОГОЧЛЕНОВ НА МНОЖИТЕЛИ	
	§ 37. Что такое разложение многочленов	
	на множители и зачем оно нужно	160
	§ 38 Вынесение общего множителя за скобки	162
	§ 39. Способ группировки	
	§ 40. Разложение многочленов на множители	
	с помощью формул сокращённого умножения	169
	§ 41. Разложение многочленов на множители	
	с помощью комбинации различных приёмов	174
	§ 42. Сокращение алгебраических дробей	178
	§ 43. Тождества	184
	§ 44. Среднее значение и дисперсия	187

ГЛАВА 8. ФУНКЦИЯ $y=x^2$

§ 45. Функция $y = x^2$ и её график	189
§ 46. Графическое решение уравнений	
§ 47. Что означает в математике запись $y = f(x)$	199
§ 48. Группировка данных	210
Ответы	214

Учебное издание

Мордкович Александр Григорьевич, Николаев Николай Петрович

АЛГЕБРА 7 класс

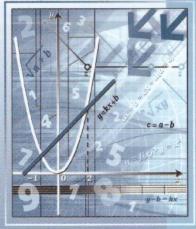
УЧЕБНИК

для общеобразовательных организаций (углублённый уровень)
В двух частях
Часть 2

Генеральный директор издательства М. И. Безвиконная Редакторы С. В. Бахтина, В. В. Черноруцкий Оформление: Т. С. Богданова Художественный редактор Е. А. Адамов Технический редактор О. Б. Резчикова Корректоры С. О. Никулаев, В. И. Антонов Компьютерная вёрстка и графика: А. А. Борисенко

Формат 70×90 ¹/₁₆. Бумага офсетная № 1. Гарнитура «Школьная». Печать офсетная. Усл. печ. л. 16,97. Тираж 3000 экз. Заказ №

> Издательство «Мнемозина». 105043, Москва, ул. 6-я Парковая, 296. Тел.: 8 (499) 367 5418, 367 6781. E-mail: ioc@mnemozina.ru www.mnemozina.ru


> > ИНТЕРНЕТ-магазин. Тел.: 8 (495) 783 8284. www.shop.mnemozina.ru

Отпечатано в АО «Первая Образцовая типография», филиал «Ульяновский Дом Печати». 432980, г. Ульяновск, ул. Гончарова, 14.

Алгебра

часть 2

Углублённый уровень

